ORNL/CSD-94

MARTIN MARIETTA

The Atmospheric Transport Model for Toxic Substances (ATM-TOX)

Richard J. Raridon Brian D. Murphy Walter M. Culkowski Malcolm R. Patterson

OPERATED BY
MARTIN MARIETTA ENERGY SYSTEMS, INC.
FOR THE UNITED STATES
DEPARTMENT OF ENERGY

Printed in the United States of America. Available from National Technical Information Service
U.S. Department of Commerce
5285 Port Royal Road, Springfield, Virginia 22161
NTIS price codes—Printed Copy: A07; Microfiche A01

T NOT COPYPIGHT

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Computer Sciences

THE ATMOSPHERIC TRANSPORT MODEL FOR TOXIC SUBSTANCES (ATM-TOX)

Richard J. Raridon, Brian D. Murphy, Walter M. Culkowski,* and Malcolm R. Patterson

*Atmospheric Turbulence and Diffusion Laboratory, NOAA, Oak Ridge, Tennessee 37830

Date Published - November 1984

OAK RIDGE NATIONAL LABORATORY
Post Office Box X
Oak Ridge, Tennessee 37831
operated by
MARTIN MARIETTA ENERGY SYSTEMS, Inc.
for the
U.S. Department of Energy
under Contract No. DE-AC05-840R21400

1895

CONTENTS

		F FIGURES
AC	KNO	WLEDGMENTS
		ACT
1.	THE	E ATMOSPHERIC TRANSPORT MODEL
	1.1	INTRODUCTION
2.	BAS	IC CONCEPTS AND CALCULATIONS
	2.1	GAUSSIAN PLUMES
	2.2	WIND ROSES
	2.3	SOURCES
	2.4	PLUME DEPLETION
	2.5	DRY DEPOSITION
	2.6	WET DEPOSITION
	2.7	OTHER DEPLETION PROCESSES
	2.8	BACKGROUND
	2.9	SUMMARY OF MODEL CALCULATIONS
3.	THE	E ATMOSPHERIC TRANSPORT MODEL PROGRAM
	3.1	GENERAL INFORMATION
	3.2	STRUCTURE OF THE PROGRAM
	3.3	PROGRAM AND SUBROUTINE FUNCTIONS
	3.4	SUBROUTINE DESCRIPTIONS
4.	INP	UT TO AND OUTPUT FROM ATM
	4.1	ENTERING DATA: AN OVERVIEW
	4.2	ENTERING DATA: THE READ AND FORMAT STATEMENTS
	4.3	INPUT AND OUTPUT
RE	FER	ENCES
	Ą.	LIST OF SYMBOLS
	В.	PROGRAM LISTING
	C.	GLOSSARY OF TERMS USED IN THE ATM-TOX
	C	OMPUTER PROGRAM
	D.	INPUT DATA SET
	E.	JOB CONTROL LANGUAGE
	F.	OUTPUT FROM PROGRAM

LIST OF FIGURES

1.	Pasquill-Gifford horizontal dispersion coefficients versus distance	5
2.	Pasquill-Gifford vertical dispersion coefficients versus distance	6
3.	Smith's $\sigma_z(x)$ compared to Pasquill-Gifford $\sigma_z(x)$	
	for all stability categories and two roughness lengths	7
4.	Initial and transformed area sources.	
	Part a, $\sqrt{A/R}$ < 2; part b, 2 < $\sqrt{A/R}$ < $\sqrt{4}\pi$; part c, $\sqrt{A/R}$ > $\sqrt{4}\pi$	9
5.	Structure of the Atmospheric Transport Model	16
6.	Division of sector into regions having equal source strengths	20
	Effect of terrain influence upon plume height	26

ACKNOWLEDGEMENTS

The authors express their gratitude for the helpful comments and constructive criticism from their colleagues Ron Sharp, Jonas Holdeman, and Charles Miller and from Mark Scruggs, formerly of the EPA Raleigh office. Our appreciation to Dr. Joan Lefler is also stated here and for her insight and guidance as project officer.

We are grateful to F. M. O'Hara, Jr., for his assistance in documenting this effort and to Bobbie Roth for typing this report. This research was sponsored by the U.S. Environmental Protection Agency.

THE ATMOSPHERIC TRANSPORT MODEL TOXIC SUBSTANCES (ATM-TOX)

by

Richard J. Raridon, Brian D. Murphy, Walter M. Culkowski,* and Malcolm R. Patterson

ABSTRACT

An updated version of the Atmospheric Transport Model includes a wind profile, afternoon and nocturnal mixing heights, and first-order degradation of the airborne species. The previous version included the effect of aerodynamic roughness on dispersion constants, terminal and deposition velocities, plume tilting for heavy particles, and an episodic calculation of exposure maxima. The model calculates atmospheric concentration for both wetfall and dryfall. Sample input and output demonstrate the use of the model.

^{*}Atmospheric Turbulence and Diffusion Laboratory, NOAA, Oak Ridge, TN 37830

1. THE ATMOSPHERIC TRANSPORT SUBMODEL

1.1 INTRODUCTION

The Atmospheric Transport Model (ATM) is a computer program for predicting the concentration and deposition on the earth's surface of airborne pollutants from point sources (such as smokestacks), line sources (such as rows of smelters), and area sources (such as landfills). ATM can be used by itself or as part of a larger, more comprehensive model to calculate the airborne concentrations and cumulative depositions at up to 40 gage sites of up to 20 pollutants downwind from a maximum of 10 point sources, 10 line sources, and 10 area sources. The program is written in FORTRAN IV and requires a central processing unit with at least 700K of user memory and the normal peripherals. The program was developed on an IBM system, and some coding conventions (such as data-block identifiers) reflect the vernacular of that system, but they are readily changed for use of the program on other systems. Data characterizing the pollutants, pollution sources, terrain surrounding the sources, and meteorology must be supplied by the user. Several parametric choices must also be specified by the user to accurately reflect the circumstances being modeled and to provide control over the various functions of the program. Evaluations of and validation efforts for this model are reported elsewhere (Culkowski and Patterson, 1976; Raridon and Murphy, 1982).

ATM was originally developed at ORNL by Mills and Reeves (1973) under the sponsorship of the National Science Foundation—Research Applied to National Needs Program (NSF-RANN). The ATM provides a means of calculating the ground-level air concentrations of trace contaminants from various sources and the deposition of those contaminants on a watershed. The subsequent movement of the contaminants through the watershed by hydrologic processes can then be traced with other models, such as WHTM (Patterson et al., 1974).

The scope of ATM was expanded and several new capabilities were added by Culkowski and Patterson (1976). These additional capabilities included Hosker's (1973) formulation of the sigma dispersion constants to include (1) the effect of aerodynamic roughness length, (2) a tilting of the plume for heavy particles, (3) evaluation of episodic exposure maxima for conditions of adverse meteorology, and (4) constraints on the allowed maximum values of the dispersion parameters.

Culkowski and Patterson (1976) streamlined and modularized the program to make it easier to follow the flow of the calculations. They reorganized the input and put the table of Pasquill-Gifford (1962) dispersion parameters in a block-data subprogram. Their addition of the Hosker (1973) formulation of the Briggs (1973) and Smith (1973) dispersion parameters extended the applicable range of ATM to 50 km without sacrificing accuracy.

The current report integrates the material presented by Culkowski and Patterson with enhancements made to ATM to produce a state-of-the-art air quality model. These features include using afternoon and nocturnal mixing heights to allow for plume trapping, providing an exponential wind profile correction for elevated sources, allowing deposition velocities less than 0.01 m/s, using the Briggs dispersion parameters without the Smith roughness correction, and allowing first-order species degradation as a function of time.

The model is not drastically different from the previous versions and is still a standard, straight-line, Gaussian-plume model. It may best be described as a mathematical distillation of the relevant parts of Meteorology and Atomic Energy (Slade, 1968), a standard reference in the field of air pollution. Although it reflects the latest accepted thinking for mesoscale (100 m to 50 km) models, it is still based on restrictive assumptions, such as the presence of a straight-line wind field.

This improved version of ATM has been integrated into a comprehensive transport model for toxic materials called the Unified Transport Model (UTM)(Patterson et al., 1984) and has been applied independently to a variety of studies. These include estimation of ground-level air concentrations of cadmium near a smelter (Rupp et al., 1978), estimation of air concentrations and depositions of trace

elements on a watershed caused by fly ash from a nearby coal-fired power plant (Lindberg et al., 1976), modeling of the transport of toxic metals in the vicinity of a lead smelter (Munro et al., 1976), estimation of population exposures associated with future power plant sitings (Murphy et al., 1978; Davis et al., 1978), and air quality studies associated with environmental impact statements (Stinton et al., 1978).

The following sections of this report explain the basic concepts employed by the analysis, the calculations and operations of the computer program, and the procedures for using the program. A listing of the program, the JCL needed to run it, sample input, and examples of output are provided in Appendixes.

2. BASIC CONCEPTS AND CALCULATIONS

2.1 GAUSSIAN PLUMES

ATM is an application of the Gaussian-plume model, which has been well described in preceding publications e.g., Gifford (Slade, 1968). With this model, for each point source, an image source at an equal distance below the surface of the earth has been postulated to make the flux of matter crossing the surface zero. This practice has been described by Mills and Reeves (1973) and is well accepted in atmospheric-pollution studies. Material in the plume is removed by wet and dry deposition processes. The dryfall mechanism employs the concept of a deposition velocity in which the rate of transfer of material from the plume to the landscape is proportional to the atmospheric concentration in the layer adjacent to the ground surface. The very successful techniques for predicting plume fallout that have evolved over the years start with an analogy to the classical equation for the conduction of heat in a solid. In this analogy, the concentration of matter suspended in a turbulent fluid may be written as

$$\frac{dq}{dt} = \frac{\partial}{\partial x} \left[K_x \frac{\partial q}{\partial x} \right] + \frac{\partial}{\partial y} \left[K_y \frac{\partial q}{\partial y} \right] + \frac{\partial}{\partial z} \left[K_z \frac{\partial q}{\partial z} \right] , \qquad (1)$$

where K_x , K_y , and K_z are eddy diffusivities in the respective directions, q is the concentration of material per unit volume, and t is time. In the case of a smoke plume from a point source, x is considered to be the distance the plume travels downwind, y the horizontal distance normal to the plume's centerline, and z the vertical distance normal to the plume's centerline.

For smoke plumes, K_x is usually small in comparison with the wind speed, and here it is assumed to be zero, eliminating the first term on the right in Eq. (1). K_y , K_z , and wind speed [implicit in the left term in Eq. (1)] vary with height and time. Although a myriad of solutions have appeared in the literature, the most often used is the "Gaussian plume model"

$$q(x, y, z) = \frac{Q}{2\pi\sigma_y\sigma_z u} \quad \exp \left[-\left[\frac{y^2}{2\sigma_y^2} + \frac{z^2}{2\sigma_z^2} \right] \right] , \qquad (2)$$

where,

q = concentration of pollutant (g/m^3) ,

Q = the release rate of a pollutant from a point source (gm/sec),

u = the wind speed (m/sec) and

 σ_{ν} , σ_{z} = diffusion coefficients in the y and z directions, respectively.

It is of fundamental importance in extending, using, or understanding any Gaussian-plume model, to realize that Eq. (2) is not an exact solution and its application is very restricted. The σ_y , σ_z , and values for u chosen are empirically determined, largely from observations at ground level. Inferences of plume concentrations at any place but the surface [from Eq. (2)] and the published values for σ are certain to introduce errors into the calculations.

2.2 WIND ROSES

Atmospheric dispersion and deposition of suspended material is largely determined by the direction and strength of the wind. "Wind roses" are statistical descriptions of wind behavior. Here they are used to show with vectors the frequency (e.g., as a fraction of a year or month) with which the wind

blows in each direction, at each speed, and with each stability class. (Stability class is a meteorologic classification of the atmospheric properties within the planetary boundary layer as they relate to the dispersion of airborne material.) The stability class can be defined in terms of wind speed and amount of sunlight reaching the earth's surface. Classes 1 to 3 (or A to C) represent daytime conditions, with 1 (or A) being the lowest wind speeds. Classes 5 through 7 (E through G) represent nighttime conditions with 7 (G) being the lowest wind speeds. Class 4 (D) can occur during either day or night. The stabilty wind rose is built into the model as a frequency table. Sixteen wind directions are specified, with direction number 1 indicating wind from the north. Wind directions then progress clockwise around the rose in 22.5-degree increments. Thus, direction 16 indicates wind from the north-northwest. Correspondingly, the wind-speed classes have been divided into six categories that proceed from roughly 1 m/sec through 14 m/sec. There is a separate wind rose for each stability class. The six stability classes correspond to the conventional Pasquill-Gifford (Hilsmeier and Gifford, 1962) classification scheme proceeding from stability class A, called 1 in the program, through stability class F, called 6 in the program. The Pasquill-Gifford dispersion parameters are illustrated in Figs. 1 and 2. They were intended to be applied on scales less than 10 km. The Hosker formulation of the Briggs-Smith dispersion parameters (Hosker, 1973) is illustrated in Fig. 3. It is intended for use on cases up to 50 km and is included here for reference. Each of these dispersion parameters must be less than the mixing height of the planetary boundary layer. For each wind-speed class, a mixing depth has been incorporated in the program for that purpose.

2.3 SOURCES

In addition to point sources, the model includes line and area sources in which the origins of airborne pollution are modeled as idealized geometries. Line sources are broken into line segments, each of which fits completely within one of the 22.5-degree wind-direction sectors. The segments within each sector are further subdivided into nine equal pieces. Each piece is then modeled as a point source with the appropriate source strength for the whole piece.

For simplicity and economy, area sources are treated as roughly square or circular shapes mapped onto appropriate planar areas to take advantage of the radial nature of stability wind roses. Elongated areas may be broken up into two or more nearly circular area sources with the same source strength per unit area as the original area source. To preserve the roughly circular character of the area sources and leave the distance to the centroid approximately the same, the radial value of R of the centroid of an area source is set at the average distance of that area source from the receptor (Fig. 4a). Thus,

$$R = \frac{R_1 + R_2}{2} \tag{3}$$

where R_i and R_2 are parameters of the transformed polar area. Further, this transformed area must be approximately "rectangular", and its arc length in the θ direction must be approximately the same as its depth in the radial direction:

$$R_2 - R_1 = \frac{(R_1 + R_2)\Delta\theta}{2} . (4)$$

The area of the actual source and that of the transformed source must be the same, thus

$$A = \frac{\Delta\theta}{2} \ (R_2^2 - R_1^2) \quad , \tag{5}$$

from which

Fig. 1. Pasquill-Gifford horizontal dispersion coefficients versus distance.

Fig. 2. Pasquill-Gifford vertical dispersion coefficients versus distance.

Fig. 3. Smith's σ_z (x) compared to Pasquill-Gifford σ_z (x) for all stability categories and two roughness lengths.

$$\Delta\theta = \frac{\sqrt{A}}{R} , \qquad (6)$$

$$R_1 = R - \frac{\sqrt{A}}{2}$$

$$R_2 = R + \frac{\sqrt{A}}{2} ,$$

The conditions given above cannot be satisfied if the angle $\Delta\theta$ is larger than two radians because its radial dimension would have to be larger than the radius out to the centroid. In that case (Fig. 4b) the transformed area must be a sector of a circle with the dimensions

$$R_1 = 0 \quad , \tag{7}$$

$$R_2 = 2R$$

$$A = \frac{R_2^2 \Delta \theta}{2}$$

which yields

$$\Delta\theta = \frac{A}{2R^2} \tag{8}$$

Finally, if the value of $\Delta\theta$ calculated from the above equations is larger than 2π , the transformed area is considered a circle of radius

$$R_2 = \sqrt{\frac{A}{\pi}} \tag{9}$$

centered about the area source centroid as shown in Fig. 4c.

To maintain the generality of the program, the coordinate system for locating point, area, and line sources (as well as the receptor gages at which air concentrations and depositions are calculated) has been expressed in terms of latitude and longitude. The curvature of the earth's surface has been taken into account for all calculations involving distances between sources and gages.

2.4 PLUME DEPLETION

Plume depletion is the generic term for the removal of material from the air by deposition on the landscape (as opposed to simple dilution). Plume depletion occurs by four mechanisms: dryfall, washout, rainout, and degradation. In dryfall, the material settles to earth under the influence of

Fig. 4. Initial and transformed area sources. Part a, $\sqrt{A/R}$ < 2; part b, 2 < $\sqrt{A/R}$ < $\sqrt{4\pi}$; part c, $\sqrt{A/R}$ > $\sqrt{4\pi}$.

gravity. In washout, the material passes under a rain cloud and is scavanged from the air by the raindrops. In rainout, the material rises into a cloud and forms the nuclei for the formation of raindrops with the material being carried to earth inside the resulting raindrops. This model considers only the washout and dryfall deposition processes because rainout generally occurs at heights above that of the planetary boundary layer. Plume-depletion processes reduce the effective source strength of the plume at increasing distances from the injection point. This effective reduction of the plume source strength has been handled in a perturbative fashion by first calculating what the concentration and subsequent deposition values would be if there were no diminution of the source strength. This zero-order estimate of the concentration is then reduced by the amount of material that has been deposited. The modeling of the two major deposition mechanisms are described below.

2.5 DRY DEPOSITION

The atmospheric concentration of a particular species under consideration can be calculated with Eq. (2). This concentration at ground level for an effective stack height h with dispersion in both the z-direction and the transverse y-direction can be calculated as

$$q = \frac{Q}{2\pi\sigma_{y} \sigma_{z}u} \exp \left[-\frac{y^{2}}{2\sigma_{y}^{2}} - \frac{h^{2}}{2\sigma_{z}^{2}}\right] . \tag{10}$$

This atmospheric concentration leads to an aerial deposition given by the following formula

$$\omega = v_g \cdot \frac{Q}{\pi \sigma_y \sigma_z u} \exp \left[-\frac{y^2}{2\sigma_y^2} - \frac{h^2}{2\sigma_z^2} \right] , \qquad (11)$$

where the deposition velocity v_g has been multiplied by the atmospheric concentration to yield the deposition per unit area per unit time. The variation of this concentration and the consequent deposition in the transverse y-direction is Gaussian, and an effective measure of the width of the plume is the value of the dispersion parameter σ_y . Consequently, the transverse variation is integrated out, and the values of the atmospheric concentration and the deposition are averaged over the one-sixteenth of a circle included in each of the sixteen subcardinal directions. The dryfall deposition can be included in a perturbative sense by calculating the rate of change of the effective source strength as a function of distance:

$$\frac{dQ}{dx} = -\int \omega dy \quad . \tag{12}$$

Substituting the value for the aerial deposition determined above, we obtain

$$\frac{dQ}{dx} = -\int_0^{y'} \frac{v_g Q \exp(-h^2/2\sigma_z^2)}{\pi \sigma_y \sigma_z u} \exp(-y^2/2\sigma_y^2) dy.$$
 (13)

Those terms that are not a function of the lateral direction y can then be brought outside the integral. Because of the small contribution of the concentration in the region outside of 2σ in lateral distance, the integral may be extended from minus infinity to plus infinity without introducing large errors. This integration yields

$$\frac{dQ}{dx} = -v_g \sqrt{\frac{2}{\pi}} \frac{Q \exp(-h^2/2\sigma_z^2)}{\sigma_z u} . \tag{14}$$

The solution for an effective source strength is

$$Q = Q_o \exp \left[-\sqrt{\frac{2}{\pi}} \left(\frac{v_g}{u} \right) \int_0^x \frac{\exp \left(-h^2/2\sigma_z^2 \right)}{\sigma_z} dx' \right]$$
 (15)

Note that the above equation includes the still basically Gaussian shape in the form of an indefinite integral from the point of emission x'=0 to the point of calculation at x'=x. This integral cannot be analytically evaluated because of the dependence of the dispersion coefficient σ_z on the distance x'; it must be evaluated numerically. This formulation of the effective dryfall source strength is incorporated into an equation given at the end of the next chapter.

2.6 WET DEPOSITION

The depletion of material by washout [Englemann (1963)] can be taken to be proportional to the amount of material in the plume. This relationship is displayed in the differential equation in which the time rate of depletion is proportional, through the constant λ , to the material remaining in suspension:

$$\frac{dQ}{dt} = -\lambda Q \quad . \tag{16}$$

Again, this equation can be cast in a form that can be readily integrated:

$$\int \frac{dQ}{Q} = \int -\lambda dt , \qquad (17)$$

to yield the exponential form,

$$Q = Q_o e^{-\lambda t} . (18)$$

In turn, the transit or residence time of the material in the suspended state can be approximated as

$$t = \frac{x}{u} . ag{19}$$

Thus, the effective source strength, as modified by washout, depends on distance and wind speed in an exponential decay:

$$Q = Q_0 e^{\frac{-\lambda x}{u}} . (20)$$

2.7 OTHER DEPLETION PROCESSES

The plume may also be depleted by changes that diminish the quantity of the pollutant species of interest (e.g., radioactive decay or photolysis). A simple exponential decay mechanism has been added to allow for species change when the rate of such change is known. For each pollutant, the input parameter required is the "effective half-life" in seconds, which is the time required for a given quantity

of pollutant to be reduced to one-half its original concentration. If no half-life is entered, an essentially infinite half-life of 10^{12} sec is assigned by default. For some applications, it may be desirable to follow the concentration of the "daughter" species formed as a result of degradation of a "parent" pollutant. Therefore, an additional input parameter has been added for each pollutant. No provision has been made for following subsequent decays (i.e., the production of "granddaughters").

2.8 BACKGROUND

Some pollutants may have background concentrations in the vicinity of the receptor gages. Because the total concentration, including background, of pollutant at a particular site is often of interest, the option of inputting background values for each pollutant at each gage has been added. These background values are then added to the concentration values computed for each gage from the sources nearby.

2.9 SUMMARY OF MODEL CALCULATIONS

The diminution of source strength by dryfall and washout is incorporated into the Gaussian plume formulation along with the frequency table for occurrence of stability type, wind direction, and wind speed by multiplying the equation for a single point source with unidirectional wind flow by the appropriate factors:

$$X_{i}(x,\theta) = \sum_{p=1}^{N_{i}} \sum_{r=1}^{N_{v}} \frac{2.032F_{pr}(\theta)\overline{Q}_{ipr}(x)}{\sigma_{p}(x)u_{r}x} \exp \left[\frac{-h_{pr}^{2}}{2\sigma_{p}^{2}(x)}\right]$$
 (21)

Here,

 $X_i(x,\theta)$ = ground-level air concentration of pollutant i in direction θ at a distance x from the source,

 θ = one of the wind directions (N, NNE, NE, etc.),

r = one of eight wind-speed classes,

 $F_{pr}(\theta)$ = fraction of time during which the wind blows from direction sector θ with wind speed class r and stability class s,

 $\overline{Q}_{ipr}(x)$ = point-source strength for pollutant i modified by depletion from fallout and washout occurring at distances less than x,

 N_s = number of stability classes,

 N_{w} = number of wind speed classes,

 $\sigma_p(x)$ = vertical dispersion parameter appropriate for stability class p and distance x,

 h_{pr} = effective stack height, and

p = one of six wind-stability classes (A, B, C, D, E, and F) changing from extremely unstable to moderately stable.

The form given above is then generalized to include many point sources at many receptor sites by summing over the contributions to a given receptor by all the point sources to give

$$X_{i} = \sum_{p=1}^{N_{r}} \sum_{r=1}^{N_{r}} \sum_{j=1}^{N_{r}} \frac{2.032 F_{pr}(\theta_{j}) Q_{ipr}(x_{j})}{\sigma_{p}(x_{j}) u_{r} x_{j}} \exp \left[\frac{-h_{pr}^{2}}{2 \sigma_{p}^{2}(x_{j})} \right]$$
(22)

where N_j is the number of point sources. Note the dependence on distance that is implicitly contained in the dispersion coefficients σ . The somewhat complicated-looking formalism simply implies that contributions from many different point sources have been included, that the wind flows from a given direction with a given fractional occurrence during the climatological period of reference (which is generally taken to be one month), and that the transverse dependence of the atmospheric concentration has been integrated out and assigned to the sixteen subcardinal directions. Thus the material is assumed to be uniformly distributed within each of these subcardinal directions during the time that the wind direction is from the point source to the receptor.

3. THE ATMOSPHERIC TRANSPORT MODEL PROGRAM

3.1 GENERAL INFORMATION

The code for calculation of the results described above has been written in FORTRAN IV, which uses the most generally available type of FORTRAN compiler. In particular, the FORTRAN IV versions described here can be readily implemented on most IBM, CDC, and DEC machines with, in some cases, no changes to the source program. We have attempted to maintain this generality of the source programming to keep the Atmospheric Transport Model readily transferable from our site to other users. The current submodel is relatively simple in its computing-facility requirements, storage requirements, and machine running time.

3.2 STRUCTURE OF THE PROGRAM

The structure of ATM is illustrated in Fig. 5. The function of the main portion is to read in and report out the input data that are fed to the submodel to describe the wind frequency table; the source strengths; the locations of point sources, line sources, area sources, and resuspension sources; and the sites of the particular receptor points at which the calculated values of deposition and concentration are desired. The more detailed subprogram GEOMET is called, which calculates the geometry relating receptors and sources. In addition, the fraction of time during which washout can be expected to occur is calculated by the subroutine FRXTRN and stored for later use in other subroutines. In this subroutine the default values can be set from available climatological data for average rainfall intensity and the fraction of the time during which rainfall occurs. ATM also includes a subroutine WNDSCE for calculating resuspension contributions from area sources, such as tailing piles; however, this capability has not yet been evaluated in detail, and this part of the model is unvalidated but potentially useful.

The detailed input data and the calculated geometric relationships are passed to a subroutine called DCAL, which stands for "detailed calculations," in which the specific calculations given above for atmospheric concentration and deposition are performed. The subroutine DCAL calculates the dispersion coefficients by calls to the function SIGMA and calculates the integral in the subroutine QQP by means of a Simpson's integration (SIMPUN) taken from Westley and Watts (1970). Values for washout coefficients are calculated in the subroutine WASH.

For short-term contributions to atmospheric concentrations, the subroutine MAXCON can be employed on an hourly scale. This subroutine retains the dependence of the plume concentration on the lateral dispersion coefficient σ_y and calculates the lateral dispersion coefficient by calls to subroutine SIGA. The hour-by-hour calculation of the toxicant concentration by MAXCON requires a considerable amount of computer time; the user would be well advised to consider carefully which calculations are the most germane.

In general, the wind speeds that are input to the model have been measured near the surface and are not applicable to elevated sources, such as smoke stacks. For each point source, the wind speeds at the source height are computed with a power-law relationship proposed by Irwin (1979). The equation has the form

$$u(z) = u \cdot \left(\frac{z}{z_o}\right)^{p} , \qquad (23)$$

where u is the wind speed measured at a height z_o (generally 10m) and u(z) is the computed speed at height z. Irwin found that the exponent p was primarily a function of stability class, with a slight dependence upon surface roughness. We have chosen to use the approach of the EPA RAM Model

Fig. 5. Structure of the Atmospheric Transport Model.

(Turner and Novak, 1978) and use two sets of exponents, one for rural and the other for urban conditions. These sets are shown in Table 1.

Table 1

I avic 1					
Exponents for Wind Profile					
Stability Class	p (urban)	p (rural)			
A, B	0.15	0.07			
C	0.20	0.10			
D	0.25	0.15			
E	0.40	0.35			
F, G	0.60	0.55			

The rural exponents are used if the Briggs dispersion parameters are specified (KDISP = 2 or 3), while the urban exponents are used with the Pasquill-Gifford dispersion parameters.

For each period of interest, values for the afternoon (HTA) and nocturnal (HTN) mixing heights are input to the model to be used by subroutine DCAL to allow a correction for plume trapping. To account for some of the diurnal variation of mixing height, values are computed for each stability class according to Table 2, again with the approach of the EPA RAM Model, (Turner and Novak, 1978).

Table 2

Variation in Diurnal Mixing Height	
Stability Class	Mixing Height
Α	1.5*HTA
B, C	HTA
D day	HTA
D night	(HTA+HTN)/2
E, F, G	HTN.

Because the order of use of the subroutines varies with application, discussions of each portion of the program are given below in alphabetic order. Constant reference should be made to Fig. 5, which shows the structure and relative order of use of these subroutines. All of the input is done in the main section of the program with subsequent transferral of these input data to the needed subprograms. Although the operations of the subroutines are highly structured, they can be modified by the user if necessary.

3.3 PROGRAM AND SUBROUTINE FUNCTIONS

The functions of the program ATM and its subroutines are:

ATM	The section of the program that reads in the data set, calls subroutine GEOMET and either DCAL or MAXCON, and prints out the input data.
DCAL	(Detailed Calculations) Calls most of remaining subroutines tp calculate required output.
FALL	Calculates terminal and deposition velocities for particles and deposition velocity for gases.
FFAC	Calculates Smith's roughness factors.
FRXTRN	(Fraction of Time it Rains) Inserts monthly rainfall information into the program.

GEOMET	Calculates source-to-receptor gage distances and directions,
	given the latitude and longitude of each source and receptor.
MAXCON	(Maximum Concentration) Finds the single highest concentration possible at
	a specific location from a number of point sources and specifies "worst"
	condition of wind speed, wind direction, month, and stability condition.
NAG	Five subroutines (E02CBF, E02AEF, X02AAF, X04AAF, and P01AAF)

from the NAG library for doing a bicubic spline interpolation.

PLUME Calculates plume rise parameters.

QQP Calculates attenuation of source strength from deposition, washout, or fallout. (Sigma Azimuthal) Calculates distances of receptor to plume centerlines and **SIGA**

appropriate horizontal dispersion parameters.

SIGMA Calculates vertical diffusivities.

(Simpson's rule) Employed by QQP to calculate the integral describing **SIMPUN**

attenuation of the material source strength.

(Washout) Calculates washout coefficients for particles and gases. **WASH** WNDSCE (Windblown Sources) Calculates resuspension of materials by the wind.

3.4 SUBROUTINE DESCRIPTIONS

ATM

The main program has two basic functions: to read in the bulk of the data set and to process the data set for more efficient handling in the subroutine DCAL. A data set is read that establishes a monthly or annual matrix of wind speeds, wind velocities, and stability categories. The subprogram then calculates and stores these data as the fraction of time each element of that matrix occurred.

Subroutine DCAL

This subroutine is the workhorse of the entire program. Its function is to call the required subprograms (except MAXCON and SIGA) and to print the results.

Equation (22) estimates the concentration for point sources and calculates the total point source concentration.

The subroutines WASH and FALL calculate wet and dry deposition, respectively. Dry deposition is calculated as

$$\omega_{i}(x,\theta) = \sum_{p=1}^{N_{s}} \sum_{r=1}^{N_{s}} \frac{F_{pr}(\theta)}{\sigma_{p}(x)u_{r}x} 2.032v_{i}W_{f} \exp\left[\frac{-h^{2}}{2\sigma_{p}^{2}(x)}\right] Q_{ipr}(x) , \qquad (24)$$

where

deposition rate of pollutant i, in direction θ , at a distance x from the source;

fraction of time in which only dry deposition occurs;

deposition velocity of pollutant i.

Similarly, wet deposition (washout) is calculated as

$$\omega_{i}(x,\theta) = \sum_{p=1}^{N_{s}} \sum_{r=1}^{N_{s}} \frac{F_{pr}(\theta)}{\sigma_{p}(x)u_{r}x} 2.453\lambda_{i}W_{w}Q_{ipr}(x) \sigma_{p}(x) , \qquad (25)$$

where

 W_w = fraction of time both washout and dry deposition are occurring and

 λ_i = washout coefficient of pollutant i.

The program calculates the wet and dry deposition at each receptor from each source and then sums up the contributions for each receptor. Two mixing heights (afternoon and nocturnal) are read into the program. Mixing heights for each stability class are then computed as shown in Table 2. These mixing heights are used in DCAL to correct the pollutant concentration for plume trapping. The equation of Bierly and Hewson (1962), as described by Turner (1970), is used.

Point, area, and line sources are treated virtually identically except for windblown sources (which are a subgroup of the area sources). For point, area, and line sources, the plume is normally assumed to "tilt" at the terminal velocity of the particle in question. For gases, the plume is assumed to not tilt. The deposition velocity is assumed equal to the terminal velocity if the terminal velocity exceeds 0.01 m/s; otherwise, the deposition velocity is assumed to be 0.01 m/s.

The type of vegetative cover is important because it governs the amount of dry deposition. The vegetative cover right at the gage may be different from the general type of cover assumed for the area the gage represents. Therefore, even though the program initializes each gage to the general type of ground cover (SURF(I) = KCOVER; I = gage number), each surface type may be overridden after DO loop 10 in subroutine QQP.

True area sources are fields and forests emitting water vapor, ammonia, etc. Generally, however, areas that have numerous points of emission, that are low in height, and that are more or less uniform in strength (such as household emissions of coal smoke) are classified as area sources. The ATM user must exercise judgment concerning the locations, boundaries, and source strengths of such areas.

Numerous (separate) point sources may also be included within the boundaries of an area source. In the GEOMET subroutine, the boundaries of the area sources are idealized and apportioned into the appropriate wind-direction sectors. Because the area within a given sector may still be quite large, the program breaks each area within a sector into three regions of equal source strength at increasing distances from the receptor. (See Fig. 6.) By so doing, the problems with using a single centroid (point source) approximation for an area source are substantially mitigated. Nevertheless, the subject of area sources is complex, and the reservations expressed in the discussion of the ATM subroutine should be carefully considered.

The estimate of the concentration and deposition from windblown sources is analyzed with a variety of methods. Sutton (1932) derived a model that served as a mainstay for concentration estimates for many years. It was well verified for short distances and low source heights and had the advantage of being integrable. Although Sutton used a different set of dispersion parameters from what is used here, it is possible to use Csanady's (1958) form of the Sutton approximation to fit the present model.

$$\omega_{i}(x,\theta) = \sum_{p=1}^{N_{r}} \sum_{r=1}^{N_{r}} \frac{1.016Q_{s}F_{pr}(\theta)F_{d}\delta Af}{\sigma_{p}(x)u_{r}x} \exp\left[\frac{-fx/u_{r}-h}{2\sigma_{p}^{2}}\right] \times \left[2 - \frac{2}{(1 - \frac{n_{p}}{2})(\frac{u_{r}-h}{xf}-1) + 2}\right],$$
(26)

Fig. 6. Division of sector into regions having equal source strengths.

where

 Q_s = area source strength (velocity dependent),

f = settling velocity of dust particle (m/s),

$$n_p = -\frac{2x}{\sigma_{p,z}} \frac{d\sigma_p}{dx} + 2 ,$$

h = source height (m),

 F_d = fraction of time the windblown source remains dry, and

 δA = element of area.

The line-source treatment is, again, based on the Gaussian point-source calculation, but each line source within a sector is broken into nine centroids to approximate a continuous line source.

Subroutine FALL

The present model includes effluent removal by four processes: (1) fallout, (2) deposition, (3) washout and (4) degradation. The first two processes are generally termed "dry removal," and the third is termed "wet removal." Dry removal is covered by subroutine FALL, and wet removal by subroutine WASH.

The subroutine FALL assigns particles a terminal velocity and deposition velocity according to Stokes's law. The terminal velocities are later used to calculate plume tilt. Gases are assigned a deposition velocity of 0.01 m/s and a terminal velocity of 0, unless otherwise specified. Later in subroutine DCAL, the particles are assigned a minimum deposition velocity, and the calculated concentration of both gases and particles are reduced at varying rates in subroutine DCAL and function QQP.

The two methods of effluent removal treated by FALL, fallout and deposition, are often confused because they both have the units of velocity. In fallout, a particle falls of its own weight. The driving force is gravity and applies throughout the atmosphere. In its fall, a particle reaches a terminal velocity, the fastest speed it can reach because of its density, cross-sectional area, and aerodynamic drag. Deposition is a surface phenomenon independent of gravity. It is the product of the concentration of the emission, the downwind speed of the emission near the surface of the earth (the deposition velocity), and an adsorption factor. Thus gases, such as sulfur dioxide, that deposit on a surface have a deposition velocity even though they have no terminal velocity.

For particles, the program assumes that material that is falling out will have a vertical settling velocity given by Stokes's law:

$$V_s = D^2 \cdot S \cdot 3 \times 10^{-5} , \qquad (27)$$

where

 V_s = terminal velocity of particle (m/s),

D = diameter of the particle (microns), and

S = density of particle (gm/cm³).

The constant 3×10^5 is applicable at 18° C. One would expect, for example, that V_s would appreciably diminish as the size of the turbulent elements increased. Nevertheless, the assumption that an aggregate of particles will behave with a mean terminal velocity has been used in plume work since Schmidt (1925). The theoretical objections are not very restrictive in practice, however, since a 10-micron particle of unit density is calculated to fall only twelve meters in one hour. For very large or very dense particles, where the terminal velocity becomes important, the effect of turbulence on slowing terminal velocities is apparently not very great for average dustfall (Csanady, 1972).

When particles are of the magnitude of 100 microns in radius and about 2.5 gm/cm³ in density, the plume will sink under the influence of gravity at the rate of approximately one meter per second. The centerline of the plume then reaches the surface in less than one hour. Because the centerline of the plume contains the maximum concentration, it is not "conservative" to ignore fallout (i.e., terminal velocity).

In the absence of turbulence, terminal velocities and deposition velocities would remain very similar, but turbulent air rapidly increases the deposition velocities of small particles (i.e., those below 10 microns), which are the most abundant under certain circumstances (ca. 10¹² particles per cubic meter of air). The program approximates the increased deposition velocity by assigning a deposition velocity of 0.01 m/s for terminal velocities below this value.

Deposition is generally given in the units of velocity as introduced by Chamberlain (1953).

$$v_g = \omega/X_o (x,y)$$

where,

 v_g = deposition velocity (m/s),

 ω = rate of deposition (parts/m²/s), and

 $X_o(x,y)$ = concentration at the surface (parts/m³).

Неге,

$$X_o(x,y) = X(x,y,z=o) = \frac{Q}{\pi \sigma_y \sigma_z u} \exp \left[-\frac{y^2}{2\sigma_y^2} - \frac{h^2}{2\sigma_z^2} \right]$$
 (28)

The physical processes that determine the magnitude of the deposition velocity are complex and not thoroughly understood. They depend on the material being deposited, the receptor surface, and the turbulence. The present program provides a method for calculating the deposition velocity of a gas from the turbulence type and molecular diffusivity, as suggested by Chamberlain (1953):

$$v_g = a K_z/\ln(K_z/D) ,$$

where

 $K_z = \text{diffusion constant } (m^2/s),$

D = molecular diffusivity (m²/s), and

 $a = 1.0 \, (m^{-1}).$

Unfortunately, sufficient experimental verification is lacking for uncritical acceptance of these calculations. The program has a default value for v_g of 0.01 m/s, a value found to be acceptable for SO_2 . The user may choose the Chamberlain calculation or the default value or may insert another value in place of the default value.

Sehmal and Hodgson (1974) give excellent theoretical and experimental values of particulate deposition should the reader care to pursue the matter further.

Subroutine FFAC

Subroutine FFAC calculates the F factor used in subroutine SIGMA to adjust the dispersion parameters as suggested by Smith (1973) for variations in surface roughness. Data from Fig. 5 of Smith's paper (reproduced as Fig. 6.13d by Pasquill, 1974) were fit using a bicubic spline expression (NAG, 1981). The parameters from this fit are given in the DATA statements of FFAC. This subroutine calls subroutine E02CBF from the NAG library to calculate F as a function of roughness length and distance from the source to the receptor gage.

Subroutine FRXTRN

Subroutine FRXTRN reads the weather data and divides the number of hours of measurable precipitation (0.01 inch or more) by the total hours in each month to yield the fraction (FRACT) of time it rains each month. The total rainfall divided by the number of hours of rainfall is the average rate (AVRAT) used in the program. This rate is used to determine how much airborne pollution is washed out of the air by precipitation. As explained in subroutine WASH, more detailed programming may prove necessary where wind direction and rainfall are highly correlated.

Subroutine GEOMET

The distances and angular relationships between source locations and receptor gages are calculated in subroutine GEOMET. A source point, a receptor gage, and the North Pole form the end points of a triangle on the surface of a sphere. Both the distance between the source and the receptor gage and the angular direction from north for the gage are computed from the latitudes and longitudes of source and receptor and the relationship between the sides and angles of a spherical triangle.

Subroutine MAXCON

Subroutine MAXCON uses Eq. (2) and the subroutine SIGA to find the set of circumstances that produces the greatest concentration of material during an hour at one or more locations from a number of point sources. This routine consumes a large amount of computer time if 360° are scanned at one-degree intervals (e.g., calculations for two gages and four point sources require about 20 min of computer time on an IBM 360/91).

No removal mechanisms (washout or deposition) are used in this subroutine, primarily for economy of computer time. This subroutine would usually be employed to predict deposition relatively near large stacks where that deposition could not contribute a loss of emission inventory of more than a few percent. If deposition is thought to be a major consideration, however, the function QQP with one-degree resolution should be employed in MAXCON in the same relative location as in subroutine DCAL. To save computer time, a run of five-degree intervals can be used to determine the most troublesome directions, with one-degree sweeps used on successive runs. The subroutine prints the period, wind direction, speed, and stability conditions that produce the maximum hourly concentration.

NAG Subroutines

Three subroutines (E02CBF, E02AEF, and X04AAF) and two functions (X02AAF and P01AAF) from the Numerical Algorithms Group (NAG, 1981) library are used by subroutine FFAC to do a bicubic spline interpolation of Smith's F factor of roughness.

Subroutine PLUME

Subroutine PLUME calculates the plume rise from point sources. The plumes are considered to rise as a result of the buoyancy and momentum allowed by the data input. Total height of rise is restricted, however, to 1500 meters, a typical height of the tropospheric "mixing depth."

The emitted material rises above the stack height, and that distance it goes up is called the plume rise (expressed in meters) (Briggs, 1970).

$$h = h_o + \Delta h ,$$

where,

$$\Delta h = 1.6(F_B)^{1/3}u^{-1}(3.5x^*)^{2/3}$$
 for A , B , C , D stabilities, where

 $x^* = 14 \ m \ (F_B/m^4/s^3)^{5/8}$, if $F_B < 55m^4/s^3$, and

 $x^* = 34 \ m \ (F_B/m^4/s^3)^{2/5}$, if $F_B > 55m^4/s^3$, or

 $\Delta h = 2.9 \left(\frac{F_B}{us}\right)^{1/3}$ for E and F stabilities, where

 $F_B = gWr^2 \frac{T_S - T_E}{T_F}$, in which

$$g$$
 = gravitational acceleration (9.8 m/s²),

$$W$$
 = stack gas ejection velocity (m/s),

$$r$$
 = radius of the stack (m),

$$T_S$$
 = stack gas temperature (K),

$$T_E$$
 = ambient air temperature (K),

$$s = \frac{d\theta}{dz} \left(\frac{g}{T_E} \right)$$
, and

$$\frac{d\theta}{dz}$$
 = potential temperature gradient.

The plume-rise parameters used in the sample run are given below:

$$T_S = 350 \text{ K},$$

$$T_E = 280 \text{ K},$$

$$r = 1.5 \text{ m}$$
 $W = 10 \text{m/s}$.

 $\frac{d\theta}{dz} = 1 \text{K}/100 \text{m}$ (approximately true for slightly stable or moderately stable conditions), which results in

 $\Delta h = \frac{429}{u}$ (m) for A,B,C,D stabilities (i.e., PKAPPA = 429), or

 $\Delta h = \frac{157}{u^{1/3}}$ (m) for E and F stabilities (i.e., QKAPPA = 157).

In the previous version of ATM, the quantities PKAPPA and QKAPPA were input parameters. In the current version, they are computed within the program.

Although we have not attempted to model the behavior of a plume in complex terrain, we have included a correction to the plume height when a receptor gage elevation, h(x), is not the same as the base of the point sources. The correction when h(x) > 0, as shown in Fig. 7, is that used in the Environmental Research and Technology's Point Source and Diffusion Model (Egan, 1975). A summary is given in Table 3. A correction to the plume rise calculated by PLUME is computed as h_p in subroutine DCAL.

Table 3

Correction to Plume Rise for Terrain Influence Receptor Elevation h(x) Plume Rise (h_p) $0 h (=h_o + \Delta h)$ $0 < h_1 < h h - h_1/2$ $h < h_2 h/2$ $h_3 u < 0 h + |h_3|$

Function QQP

As wet and dry deposition attenuate the strength of the plume downwind, the model calculates the fraction of material remaining by using the function QQP. As defined in the discussion of subroutine FALL, the deposition rate over any given area is

$$\omega = X_o(x,y) \cdot v_g ,$$

where X is the concentration at the surface and v_g is the deposition velocity.

Since the deposition ω removes material from the plume, the amount removed while the plume traverses the distance dx must be integrated across the width of the plume (direction y):

$$\frac{dQ}{dx} = -\int_{-\infty}^{\infty} X_o(x,y) \cdot v_g dy.$$
 (30)

Fig. 7. Effect of terrain influence upon plume height.

From Eq. (30) we may write

$$\frac{dQ}{dx} = \frac{-Qv_g \exp(-h^2/2\sigma_z^2)}{\pi u \sigma_y \sigma_z} \int_{-\infty}^{\infty} \exp(-y^2/2\sigma_y^2) dy , \qquad (31)$$

which yields

$$\int \frac{dO}{Q} = -\sqrt{\frac{2}{\pi}} \frac{v_g}{u} \int \frac{\exp(-h^2/2\sigma_z^2)}{\sigma_z} dx + \ln Q_o$$
 (32)

and

$$Q = Q_o \exp \left[- \sqrt{\frac{2}{\pi}} \frac{v_g}{u} \int_o^x \frac{\exp(-h^2/2\sigma_z^2)}{\sigma_z} dx' \right], \qquad (33)$$

where Q is the effective source strength downwind and Q_o is the original source strength.

The integral in this last equation is calculated by Simpson's rule in subroutine SIMPUN. For dry deposition and for dry periods,

$$QQP = Q/Q_o$$
.

Also,

$$dQ_{w} = -\lambda Q_{w}dt$$

where λ is the washout coefficient in reciprocal seconds and t is the time of travel in seconds. From this equation comes

$$Q_{w}/Q_{w} = \exp(-\lambda t) .$$

The time of travel is estimated by

$$x = ut$$

where u is the wind speed in the x direction. Thus,

$$t = x/u$$

and

$$Q_w/Q_w = \exp(-\lambda x/u) .$$

The dry deposition process is assumed to operate during periods of washout, also, so for washout plus dry deposition

$$QQP = Q/Q_o + Q_w/Q_{w_a} .$$

Attenuation of material by dry deposition is rapidly increased over a forest. Sehmal and Hodgson (1974), Slinn (1972), Hori (1953), and Baumgartner (1956) have reported effective deposition velocities of more than 0.1 m/s over forested regions. The causes of this increased deposition are complex and not fully understood. Certainly, the increased surface area itself leads to higher total deposition, though not an increase in v_g . The boundary-layer physics and the wind fields of a forest obviously differ grossly from respective grassland parameters. In this code, however, we choose not to alter v_g itself, but to introduce an "effective area" argument (i.e., to approximate the effective increase in deposition by ascribing a net increase of surface area over that of grassland). Thus, if one assumed that the deposition was eight times as much as that over a grassy plain, one would assign KCOVER = 8, and function QQP would multiply each surface increment in Simpson's rule by a factor of eight. Should the plume travel over heavily forested land and then an equal amount of grassland, the user might assign a value of KCOVER = 4 or KCOVER = 5. KCOVER can also be set to zero, if no deposition is expected.

A specific KCOVER can be assigned to each appropriate distance increment, or the model can specify the cover type (by a subprogram similar to the area source modifications in the MAIN Program), but the penalty in computer time is large if many area sources are used.

As explained in subroutine FALL, heavy particles settle out in the aggregate at a rate approximating Stokes's law. The net effect of this settling is to tilt the plume's centerline downward. This downward tilting is calculated in this routine for particles with a terminal velocity greater than 0.01 m/s. These particles are assumed to have a deposition velocity equal to this terminal velocity. Particles which settle at a rate of less than 0.01 m/s are assigned a deposition velocity of 0.01 m/s in subroutine DCAL. (See the description of that subroutine.) For conservatism, these particles are assigned a new terminal velocity of zero in subprogram QQP. With a terminal velocity of zero, the particles are assumed not to leave the plume, and the effective strength of the source (which is calculated in QQP) will always be too high and therefore conservative.

There have been many objections, on theoretical grounds, to using the Gaussian-plume model for deposition estimates. It has been pointed out that removal from the bottom of a Gaussian plume automatically changes the basic assumption that it remains Gaussian in shape. Defenders of the method argue that vertical mixing is sufficient to support a Gaussian approximation and, as is pointed out in the discussion of the basic calculations, that the assumed Gaussian shape cannot be rigorously defended in any case. Horst (1974) compared the effects of a mathematical model that removed only surface material with the effects of one that removed the inventory from the entire plume, as does this model. The comparison indicates that for v_g /wind speed < 0.01 the two models agree well for stabilities A to D. For stability F and/or v_g /wind speed > 0.01, the errors increase as v_g increases. Therefore, one should exercise caution in interpreting the results when forest cover is assumed. On the other hand, the complexities of flow over (and through) a forested region are not fully understood, and Horst's corrections are unsubstantiated in this case. The investigator may do well to compare the results of the present model for KCOVER = 1 and KCOVER = 10 and assume these bracket the true value.

Subroutine SIGA

This subroutine, Sigma Azimuthal, not only computes the horizontal dispersion parameters (SIGY) required in Eq. (2) but also calculates the minimum distance (DIS) from the gage to the plume's centerline and a new distance (DIS2) from the source to the intersection of the normal with the plume.

Function SIGMA

Equation (2) includes the six basic parameters of the Gaussian plume equation: source strength, wind speed, horizontal and vertical distances from the plume's centerline, and the horizontal and vertical dispersion parameters. In subroutine DCAL, the horizontal dispersion plays no part in calculating average concentrations for extended periods. The remaining parameters either are known or can be estimated.

The vertical diffusivity σ_z is calculated by the function SIGMA.

The parameter σ_z reflects a broad range of conditions, from the height of the stack to the stability of the atmosphere. Atmospheric stability can be determined by the gradient of temperature (more accurately, potential temperature). If the temperature were to decrease at the rate of 1°C per 100 m elevation, the stability would be neutral, or a "D" (in the model a "4") category; a particle of air would be free to move by inertia only, with no buoyant forces acting upon it. Because the atmosphere is warmed by the earth's surface, primarily buoyant (unstable) conditions occur for most daylight hours. On cloudy, somewhat windy days, this instability will be slight (a "C" or "3" condition) with slow warming of the surface layers. For days with intense sunlight and little wind, very unstable ("A" or "1") conditions exist. Similarly, a night cooling of the air at the surface reverses the processes.

Superimposed upon this process are other factors, such as terrain, moisture, and synoptic weather. Note, however, that because stability conditions can change as a function of height, it is common to have unstable air at low altitudes and stable air aloft, and, conversely, very stable air at the surface with less stable air aloft.

As noted earlier, the σ_z 's found in the literature are empirically based on functions of distance. The investigator has a choice of three basic methods of estimating σ_z 's: the Pasquill-Gifford (Hilsmeier and Gifford, 1962) method (P-G), the Briggs (1973) method, and the Hosker (1973) method of modifying Briggs's parameters with Smith's (1973) roughness factors. The discussion below on which diffusion scheme to use is based on arguments in a paper by Gifford (1975). It should be emphasized that these are not really competing approaches. Each model is appropriate for and should be used with specific types of sources. In the atmosphere, the wind vector and diffusivities change rapidly with height, often with marked discontinuities. The σ_z 's encompass the average vertical characteristics of the atmosphere for each stability, but only as they affect surface distributions.

Pasquill has indicated that his curves work well for point sources up to 100 meters in height. Based on the "Prairie Grass" (Cramer et al., 1958) experiments and other data, the Pasquill approach estimates stability well and has found wide acceptance. Its use in this program is recommended when the primary sources of pollutants are nonbuoyant and are emitted from a height of no more than 100 m. Thus if one is concerned primarily with line or area sources, the Pasquill-Gifford curves should normally be chosen. Also if point sources are from industries with nonbuoyant (or negatively buoyant) plumes, such as cement plants and industries using roof vents, the Pasquill-Gifford curves would again be applicable. Note, however, a strong caveat: σ_z must be limited to below 3200 m for the stability condition A, 1600 m for B, 800 m for C, 500 for D, 200 m for E, and 100 m for F. These limitations reflect the physical reality of the plume becoming uniformly mixed within the planetary boundary layer in the vertical direction as it proceeds downwind.

For the majority of cases, however, the primary interest will probably be in the emission of buoyant plumes from tall stacks. The behavior of such plumes is obviously different from that of plumes emitted near the ground. Initial turbulent dispersion is low, since such plumes are well above the height of maximum turbulence because of surface roughness and buoyant currents from the earth's surface are in the process of being damped. Such cases may not be suited to treatment with the Pasquill-Gifford method. Therefore, the present model calculates these vertical dispersion parameters with a slightly altered version of the method introduced by Hosker (1974), based on the works of Briggs (1973) and F. B. Smith (1973). Briggs, using TVA plume studies and the St. Louis Dispersion Study (McElroy and Pooler, 1968), produced a theoretical framework to obtain σ_z 's from elevated, buoyant plumes. F. B. Smith incorporated roughness and thermal influences in a formal treatment to obtain σ_z 's over a wide range of conditions. The correction to σ_z for roughness (Smith's F-factor) is calculated in

subroutine FFAC as a function of distance downwind and roughness length 0.01 times the average height of solid objects (trees, buildings, etc.) intruding into the moving mass of air.

However, it may not always be possible to choose an appropriate roughness length. Therefore, the program allows a third choice, the use of the formulations for σ_y and σ_z recommended by Briggs for open-country conditions.

Normally, the difference in results from using the three sets of curves (correctly) should not exceed 10 to 20%. The greatest difference (a factor of ten) occurs at the limit of validity of the P-G curves for stability condition A and a roughness length of 0.1 meters. Otherwise, the overall differences are slight.

Subroutine SIMPUN

Subroutine SIMPUN is an "in-house" subroutine written at ORNL by J. Barish to implement Simpson's rule for integration and is used in subroutine QQP.

Subroutine WASH

Rainfall is a very important factor in removing effluent from the atmosphere. One-third or more of the suspended material below cloud level may be removed from the atmosphere by rainfall in one hour. Washout is considered to attenuate the entire plume at a uniform rate as it travels downwind. Consequently, the washout coefficient has the units of inverse time, and the material inventory downwind is given by

$$Q = Q_o \exp(-\lambda t) ,$$

where

 Q_o = original source strength,

 λ = washout coefficient (s)⁻¹, and

t = time of travel (s).

Broadly speaking, rainfall is about ten times more efficient in removing material than dry deposition. Within the first few hundred meters of a tall stack, washout is the only method of transferring material from the plume to the surface.

The program calculates washout of particles and gases from the information on the average amount of rainfall, supplied by subroutine FRXTRN.

The particulate washout estimate is based on Fig. 5.9 of Meteorology and Atomic Energy (Slade, 1968). His curves were digitized, and the washout coefficient is determined for a particular particle diameter and density by interpolation of that digitized data.

The calculation of washout for gases is done by the more direct Kelkar-Hanford curve of Fig. 5.11 in Meteorology and Atomic Energy (Slade, 1968):

$$\frac{\lambda}{D}$$
 = 5.55×10⁻⁴ $R^{0.6}$,

where

$$\frac{\lambda}{D}$$
 = washout coefficient (s⁻¹),

R = rainfall rate in millimeters per hour, and

D = molecular diffusivity in cm²/s.

The investigator should note two important items. First, the units used in FRXTRN are for rainfall in hundreths of an inch per hour (the standard U.S. Weather Service reporting unit). The conversion to millimeters is performed in subroutine WASH. Second, the average rainfall rate is used, implying that rainfall is independent of atmospheric stability, wind direction, and wind speed. In many areas a definite correlation exits between wind vectors and rainfall, however; subroutines FRXTRN and WASH as well as the main portion of the program and the calling subprogram DCAL should be modified to reflect this dependence if this effect is dominant. The National Climatic Center, Asheville, N.C., can supply rainfall and wind-vector tables upon request for most major airports for most periods.

Subroutine WNDSCE

In some places, principally in mining and smelting areas, material previously deposited may be reentrained in the atmosphere during periods of dry windy weather. Thus a rather specialized area source is created, with source strength dependent on wind speed and the physical properties of the source itself. Subroutine WNDSCE calculates the re-entrainment, dispersal, and ultimate deposition of such material.

These properties are, unfortunately, not easily determined without additional studies. Once deposited, the physical structure of the material will change because of weathering, agglomeration, solubility, etc. The material re-entrained may not even be physically identical to that deposited. Relying principally on Bagnold's (1959) work, Mills et al. (1975) used the following model of re-entrainment.

Dust (diameter <0.1 mm) cannot be directly transported into the atmosphere by turbulent diffusion, since the drag force for such small grains is spread over a large area rather than an individual particle. The process of dust suspension is assumed to take place in three steps:

(1) The larger grains are set into motion across the surface (a process known as saltation) as the wind speed increases. The threshold velocity for the onset of saltation is given by

$$v_t = 0.575 \frac{\sqrt{\sigma - \rho}}{\rho} gd \log_{10} \left(\frac{z}{k}\right), \qquad (34)$$

where

z = height of wind measurement (~1 m),

k = surface roughness during saltation (~.01m),

 $g = \text{gravitational acceleration } (m/s^2),$

d = grain diameter (m),

 σ = density of sand grains (gm/m³),

 ρ = density of air (gm/m³).

The saltation rate q (g/m-s) may then be calculated as

$$q = \alpha C \sqrt{\frac{d}{D}} \frac{\rho}{g} (u - v_t)^3, \qquad (35)$$

where

$$\alpha = 1/(5.75 \log_{10}(\frac{z}{k}))^3$$

D = standard grain diameter (0.00025m),

u = wind speed (m/s),

C = constant depending upon particle size distribution (nearly uniform sand, C = 1.5; naturally graded sand, C = 1.8; wide range of grain size, C = 2.8).

(2) Dust is suspended by the impact of the sand particles, and so suspension is a function of the saltation rate. As a first approximation we take the suspension Q_s to be proportional to the saltation rate q:

$$Q_s = R_f q .$$

 R_f^{-1} has the dimension of length and could be considered roughly proportional to the average distance travelled by the sand grains between ground impacts. From the agricultural erosion data of Gillette et al. (1972), one may infer a value of R_f of about 10^{-5} m⁻¹. This value is only a rough approximation and should be measured for the area in question.

(3) This source strength is used as an area-source input in subroutine DCAL.

4. INPUT TO AND OUTPUT FROM ATM

ENTERING DATA: AN OVERVIEW

The first data entered into ATM are concerned with the definition of atmospheric stability class: wind speeds for each wind-speed class and the wind rose for each wind-speed class, stability class, direction, and period. Data pertaining to the geographic location of the receptor gages, point sources, area sources, line sources, and wind-blown sources are next. Logical variables (switches) describe whether each gage or source is to be included in the subsequent calculations. The positions of these gages are specified in terms of latitude and longitude. Heights and plume-rise parameters for point sources are next, along with the heights for area and line sources. The number of pollutants that are to be included in the calculation is then entered along with the pollutant type, the physical state of the pollutant, and its characteristics. Finally, the source strengths are included for point, area, and line sources, respectively.

Grouping similar data together like this permits the running of several cases with different numbers of sources, pollutants, effective source heights, and emission rates for a particular geographic location and climatology; makes the program flexible; allows the calculation of extended scenarios for long-term effects; and minimizes the internal core storage required by the program because the data can be read in the input data stream, used immediately to perform the needed calculations, and then overwritten as additional data are read in describing the new source strengths.

The input data fields have been kept to either five or ten characters in length. In addition, each format is reused in succeeding input data acquisition statements to reduce the number of required formats.

ENTERING DATA: THE READ AND FORMAT STATEMENTS

All of the READ statements used by ATM to read the data are listed in Table 4 along with the data blocks that they read. The FORMAT statements that these READ statements use are listed below in the descriptions of the data blocks.

Table 4. The READ and FORMAT statements occurring in ATM and the data blocks with which they are associated.

Data Block	READ and	FORMAT Sta	* , * ,		
				•	

- READ (IN,99) ATITLE 99 FORMAT (10A8)
- 2. READ (IN,97) KDISP, KTAG, KSEA, ROUGH 97 FORMAT (315, E10.0)
- 3. READ (IN,70)(HTA(I),I=1,KSEA) 70 FORMAT (7E10.3)
- READ (IN,700 (HTN(I),I=1,KSEA) 70 FORMAT (7E10.3)
- 5. READ (IN,81) NWINDS, NDIR, NFSTAB, (JSTAB(I),I=1,NFSTAB) 81 FORMAT (16I5)

- 6. READ (IN,70) (WINDS(I),I=1,NWINDS) 70 FORMAT (7E10.3)
- 7. READ (IN,87) (SEANAM(ISEA),ISEA=1,KSEA) 87 FORMAT (7(2X, A8))
- 8. READ (IN,86) KDUMMY 86 FORMAT (A4)
- 9. READ (IN,85) (FREQ(ISEA,I,J,K),J=1,NWINDS) 85 FORMAT (6X, 8F7.4)
- 10. READ (IN,81) NG, NP, NA, NL, NWS, NBG 81 FORMAT (1615)
- 11. READ (IN,78) (SKIPG(I),I=1,NG) 78 FORMAT (16L5)
- 12. IF (NP.NE.0) READ (IN,78) (SKIPP(I),I=1,NP) 78 FORMAT (16L5)
- 13. IF (NA.NE.0) READ (IN,78) (SKIPA(I),I=1,NA) 78 FORMAT (16L5)
- 14. IF (NL.NE.0) READ (IN,78) (SKIPL(I),I=1,NL) 78 FORMAT (16L5)
- 15. READ (IN,37) GLATD, GLATM, GLATS, GLOND, GLONM, GLONS, HTG(I), GNAME(I) 37 FORMAT (7F10.5, 2X, A8)
- 16. READ (IN,37) PLATD, PLATM, PLATS, PLOND, PLONM, PLONS, HGT(J), PNAME(J) 37 FORMAT (7F10.5, 2X, A8)
- 17. READ (IN,37) ALATD, ALATM, ALATS, ALOND, ALONM, ALONS, HGA(K), ANAME(K)
 37 FORMAT (7F10.5, 2X, A8)
- READ (IN,37) LLATDS, LLATMS, LLATSS, LLONDS, LLONMS, LLONSS, HGL(L), LNAME(L)
 37 FORMAT (7F10.5, 2X, A8)
- 19. READ (IN,37) LLATDF, LLATMF, LLATSF, LLONDF, LLONMF, LLONSF 37 FORMAT (7F10.5, 2X, A8)
- 20. READ (IN,70) (AREA(K),K=1,NA) 70 FORMAT (7E10.3)
- 21. READ (IN,70) (ST(J),J=1,NP) 70 FORMAT (7E10.3)
- 22. READ (IN,70) (AT(J),J=1,NP) 70 FORMAT (7E10.3)
- 23. READ (IN,70) (RAD(J),J=1,NP) 70 FORMAT (7E10.3)
- 24. READ (IN,70) (VEL(J),J=1,NP) 70 FORMAT (7E10.3)

- 25. READ (IN,61) NPOL, KCOVER 61 FORMAT (I5, F5.0)
- 26. READ (IN,78) (SKIPOL(I),I=1,NPOL) 78 FORMAT (16L5)
- 27. READ (IN,55) (IPTYPE(M),DF1(M),DF2(M),THALF(M),IPAR(M), POLNAM(M),M=1,NPOL)
 55 FORMAT (I5, 3E10.0, I2, 2X, A8)
- 28. READ (IN,70) (PQI0(I,M,MON),MON=1,KSEA) 70 FORMAT (7E10.3)
- 29. READ (IN,70) (AQI0(K,M,MON),MON=1,KSEA) 70 FORMAT (7E10.3)
- 30. READ (IN,70) (LQI0(L,M,MON),MON=1,KSEA) 70 FORMAT (7E10.3)
- 31. READ (IN,70) (COPT(I,M,MON),MON=1,KSEA) 70 FORMAT (7E10.3)
- 32. READ (IN,45) (ITYPE(I),DEN(I),DSALT(I),DSUSP(I),I=1,NWS) 45 FORMAT (I10, 3E10.0)
- 33. READ (IN,70) (CONCF(K,M),M=1,NPOL) 70 FORMAT (7E10.3)
- 34. READ (IN,70) (FDRY(MON),MON=1,KSEA) 70 FORMAT (7E10.3)
- 35. READ (IN,70) (SSCON(I),I=1,NWS) 70 FORMAT (7E10.3)
- 36. READ (IN,61) ICHO 61 FORMAT (I5, F5.0)

4.3 INPUT AND OUTPUT

In the following, 36 input data blocks are described, each of which contains data acquired by a single READ statement in the main section of ATM. For each of these data blocks, the format, the input variable names, their units, and their usage are given.

Data Block 1

FORMAT (10A8)

ATITLE

an 80-character name for this particular computer run.
 This choice of a name is completely left to the user and is simply printed out as a heading at the beginning of the calculation.

Data Block 2

FORMAT (315,E10.0)

KDISP

= a control variable for the calculation of the sigma dispersion coefficients; it can have a value of 1, 2, or 3:

- = 1 indicates that the Pasquill-Gifford stability parameters are to be used.
- 2 indicates that Hosker's formulation of the Briggs-Smith dispersion parameters are to be calculated in subroutine SIGMA and used rather than the Pasquill-Gifford dispersion coefficients.
- = 3 indicates that the Briggs dispersion parameters are to be used but without a roughness factor.

KTAG

- a control variable for specifying whether or not detailed printout of dispersion parameters and wind rose frequency table is desired.
- = 1 produces a detailed printout.
- = 2 produces no detailed printout.

KSEA

the number of periods (months or seasons) to be considered in this run; KSEA must be less than or equal to 12 in the current version. The names of these periods will be read in a following READ statement. The number of intervals (months, emissions, etc.) used in the wind frequency tables should be the same as the number used in the source inventories, or the results may be misleading. If the two sets of data are based on different time scales, the source strength should be averaged to the same interval as is used for the wind data.

ROUGH

the roughness parameter for use in the Hosker formulation of dispersion coefficients. This effective roughness parameter is approximately 1/100th of the height of intrusions into the atmosphere (such as trees, towers, and buildings) in meters. A value for ROUGH is only required if KDISP = 2.

Data Block 3

FORMAT (7E10.3)

HTA

 a climatological mean value of the afternoon mixing height in meters. Multiple values of HTA are input, one for each period.

Data Block 4

FORMAT (7E10.3)

HTN

 a climatological mean value of the nocturnal mixing height in meters. Again, there is one value of HTN for each period.

Data Block 5

FORMAT (1615)

NWINDS

the number of wind-speed classes included in the following wind-rose frequency table; the number must be no more than eight in the current version.

NDIR

the number of wind directions included in the frequency wind rose. This number should always be 16 in the current version. However, more than or less than 16 wind directions can be used if corresponding modifications are made in subroutine GEOMET. **NFSTAB**

the number of stability types included in the wind-rose frequency table. This number typically is six or seven and must be seven or less in the current version. NFSTAB must correspond to the number of stability types assigned in the following array JSTAB. There, the numbers 1 to 7 correspond to Gifford's stability types A to G, respectively.

JSTAB

the Pasquill-Gifford stability type used by the frequency wind rose. For a day-night wind rose, the values of JSTAB should be 1, 2, 3, 4, 4, 5 or 1, 2, 3, 4, 4, 5, 6, as appropriate. The double occurrence of category 4 reflects the division of that class into daytime and nocturnal components. The data from NOAA determines whether five or six classes are represented (sometimes the data from the sixth stability class are included with those for the fifth). The alternative chosen for JSTAB, then, must reflect the form of the wind data read in Data Block 9.

Data Block 6

FORMAT (7E10.3)

WINDSD

the wind speed for each of the wind-speed classes specified by NWINDS. This value is the mean wind speed in meters per second for the wind-rose frequency table.

Data Block 7

FORMAT (7(2X,A8))

SEANAM

an eight-character name for each period, the total number of which is set by the variable KSEA in Data Block 2. There should be one name right-adjusted in each field of ten columns. Seven season names can be accommodated per input data card image. If there are more than seven, another card image identical in format should follow in the input data stream until the total number of periods equals KSEA.

Data Block 8

FORMAT (A4)

KDUMMY

a title card image for the joint frequency table.

Data Block 9

FORMAT (6X,8F7.4)

FREQ

a joint frequency wind rose that takes into consideration direction, wind speed, and stability class with the total number of entries determined by the values of NWINDS, NDIR, and NFSTAB. The array FREQ will be normalized within the main program so the sum of the elements of FREQ for the period ISEA is unity.

Therefore, the input units for this array are arbitrary although the same units must be used for each period ISEA. Each input data card image should contain NWINDS values for the relative occurrence of the wind-speed class for the given wind-stability type and wind direction.

Data Block 10	FORMAT (1615)
---------------	---------------

NG = the number of receptor gages (≤ 40) at which the values of deposition and concentration are desired.

NP = the number of point sources (≤ 10) from which pollutants emanate.

NA = the number of area sources (\leq 10) from which emissions occur.

NL = the number of line sources (≤ 10) from which emissions occur.

NWS = the number of windblown sources from which resuspension occurs. The number of windblown sources should be included in the count of total area sources, NA.

The number of area sources that are not windblown resuspension sources is equal to the difference

between NA and NWS.

NBG = the parameter indicating whether or not backgroundconcentration values are to be input (NBG > 0 indicates that background values are to be read for each pollutant).

Data Block 11 FORMAT (16L5)

If NG is greater than zero (i.e., if there are any gages), the following data must be entered and read individually for each gage.

SKIPG = T if the particular gage is to be skipped during the ensuing calculations.

= F or blank if the calculations are to be performed.

These logical variables are read in fields five characters wide. Sixteen gages can be specified on each card image. The value T must occur within each five-column field if the gage is to be skipped in the ensuing calculations. The value F must be placed anywhere within that five-column field or the field left blank if the calculations are to be performed for that particular receptor gage.

Data Block 12 FORMAT (16L5)

If NP is not equal to zero (i.e., if there are any point sources), the following data must be entered for each point source.

SKIPP

- T if the particular point source is to be skipped during the ensuing calculations.
- = F or blank if the calculations are to be performed.

Values are input in the same manner as for SKIPG (Data Block 11).

Data Block 13 FORMAT (16L5)

If NA is not equal to zero (i.e., if there are any area sources), the following data must be entered for each area source.

SKIPA

- T if the calculations for this area source are to be skipped.
- = F or blank if the calculations are to be performed.

Values are input in the same manner as for SKIPG (Data Block 11).

Data Block 14 FORMAT (16L5)

If NL is not equal to zero (i.e., if there are any line sources), the following data must be entered for each line source.

SKIPL

- T if this line source is to be skipped during the ensuing calculations.
- = F or blank if the calculations are to be performed.

Values are input in the same manner as for SKIPG (Data Block 11).

Data Block 15 FORMAT (7F10.5,2X,A8)

GLATD	=	the degrees of the gage latitude.
GLATM	===	the minutes of the gage latitude.
GLATS	=	the seconds of the gage latitude.
GLOND	=	the degrees of the gage longitude.
GLONM	=	the minutes of the gage longitude.
GLONS	=	the seconds of the gage longitude.
TIMO		the elementary of the many polation to

HTG = the elevation of the gage relative to a base plane.

GNAME = the eight-character name for this receptor gage; it is

adjusted to fall in columns 73 to 80. This name is simply printed

out as an identification in the following calculations.

Data Block 16 FORMAT (7F10.5,2X,A8)

PLATD	=	the degrees of the point-source latitude.
PLATM	=	the minutes of the point-source latitude.
PLATS .	=	the seconds of the point-source latitude.
PLOND	=	the degrees of the point-source longitude.
PLONM	=	the minutes of the point-source longitude.
PLONS	, =	the seconds of the point-source longitude.
HGT	=	the height of the point source

PNAME

the eight-character name for this point source adjusted to fall in columns 73 to 80. This name is also printed out in the following calculations.

Data Block 17 FORMAT (7F10.5,2X,A8)

ALATD = the degrees of the area-source latitude.

ALATM = the minutes of the area-source latitude.

ALATS = the seconds of the area-source latitude.

ALOND = the degrees of the area-source longitude.

ALONM = the minutes of the area-source longitude.

ALONS = the seconds of the area-source longitude.

HGA = the height of the area source.

ANAME = the eight-character name for this area source adjusted to fall in columns 73 to 80. This area-source

name is also printed out in the following calculations.

Data Block 18 FORMAT (7F10.5,2X,A8)

LLATDS the degrees of the line source's starting-point latitude. **LLATMS** the minutes of the line source's starting-point latitude. LLATSS the seconds of the line source's starting-point latitude. LLONDS the degrees of the line source's starting-point longitude. **LLONMS** the minutes of the line source's starting-point longitude. LLONSS the seconds of the line source's starting-point longitude. the height of the line source. HGL the eight-character name for this line source LLNAME

adjusted to fall in columns 73 to 80.

This name is also be printed out for identification in the following calculations.

Data Block 19 FORMAT (7F10.5,2X,A8)

LLATDF = the degrees of the line source's ending-point latitude.

LLATMF = the minutes of the line source's ending-point latitude.

LLATSF = the seconds of the line source's ending-point latitude.

LLONDF = the degrees of the line source's ending-point longitude.

LLONMF = the minutes of the line source's ending-point longitude.

LLONSF = the seconds of the line source's ending-point longitude.

Note that there is no name attached to the ending point of a line source; the ending point has the same name that is attached to its starting point. A name can be inserted in this field; however, that name will not be printed out in the following calculations.

Data Block 20 FORMAT (7E10.3)

AREA

the area of an area source in square meters. Seven such areas are read per card image, and the data should continue on the next card image if there are more than seven area sources. The maximum number of area sources allowed in the current program is ten.

Data Block 21 **FORMAT (7E10.3)**

ST the temperature in degrees Kelvin at the exit port of each point

source (stack or vent).

Data Block 22 **FORMAT (7E10.3)**

AT the ambient temperature in degrees Kelvin near each point source.

Data Block 23 **FORMAT (7E10.3)**

RAD the radius in meters of the exit port for each point source.

FORMAT (7E10.3) Data Block 24

VEL the exit velocity in meters per second of the effluent from each point source.

Data Block 25 **FORMAT (15,F5.0)**

NPOL the number of pollutants for which the following

calculations are to be performed.

KCOVER the cover-type specification, which is generally between 1.0

> and 10.0. This cover specification enhances the deposition velocity, which is assumed to be 0.01 m/sec for all pollutants. This parameter is basically related to the type of vegetation that covers the area being

modeled. A value of 1.0 is appropriate for grassland, and a

value of 10.0 is appropriate for dense forest. KCOVER can be set to 0.0 if appropriate.

Data Block 26 FORMAT (16L5)

SKIPOL a logical variable that specifies whether or not each

pollutant is to be skipped in the following calcultions.

T skips the calculations for this particular pollutant.

F or blank performs the calculations for this pollutant.

FORMAT (I5,3E10.0,I2,2X,A8) Data Block 27

IPTYPE the pollutant type, particulate or gas.

1 implies the pollutant is a particulate.

2 implies the pollutant is a gas.

DF1 the diameter of the particle in 10^{-6} m if IPTYPE = 1.

DF1 is not used if IPTYPE = 2.

DF2

the density of the particle in g/cm^3 if IPTYPE = 1 or the diffusivity of the gas in air in m^2/s if IPTYPE = 2.

THALF

= the half-life for pollutant reaction or decay in seconds; the default value is 10¹² sec if this field is left blank.

IPAR

the parameter that labels the pollutant as a "daughter" of another pollutant. The value of IPAR indicates the parent of the pollutant.

POLNAM

the eight-character name for the pollutant of interest; this name is simply printed out as an identification during the remainder of the calculations.

Data Block 28

FORMAT (7E10.3)

PQI0

the pollutant source strength in grams per second of the first pollutant from the first point source. One value is entered for each period covered by the calculations. Seven such source strengths can be entered on each card image; additional data can be entered on additional card images until KSEA (the number of periods) values are entered. Similar data are then entered for the next pollutant (starting in columns 1 through 10 of a new card image). A series of such card images must be entered for each pollutant emanating from the first source. Once the pollutants from one source are thus characterized, the pollutants from the next source are described in a like manner. This process is repeated until the emissions from all the point sources are quantified.

Data Block 29

FORMAT (7E10.3)

AQI0

= area source strength in grams per square meter per second of the first pollutant from the first area source. One value is entered for each period covered by the calculations. Seven such source strengths can be entered on each card image; additional data can be entered on additional card images until KSEA (the number of periods) values are entered. Similar data are then entered for the next pollutant (starting in columns 1 through 10 of a new card image). A series of such card images must be entered for each pollutant emanating from the first source. Once the pollutants from one source are thus characterized, the pollutants from the next source are described in a like manner. This process is repeated until the emissions from all the area sources are quantified.

Data Block 30

FORMAT (7E10.3)

LQ10

= the line source strength in grams per meter of the first pollutant from the first line source. One value is

entered for each period covered by the calculations. Seven such source strengths can be entered on each card image; additional data can be entered on additional card images until KSEA (the number of periods) values are entered. Similar data are then entered for the next pollutant (starting in columns 1 through 10 of a new card image). A series of such card images must be entered for each pollutant emanating from the first source. Once the pollutants from one source are thus characterized, the pollutants from the next source are described in a like manner. This process is repeated until the emissions from all the line sources are quantified.

Data Block 31

FORMAT (7E10.3)

COPT

the background concentration in grams per cubic meter for each pollutant for each gage (read only if NBG is not zero).

Data Block 32

FORMAT (I10,3E10.0)

One set of the following data is entered for each windblown source.

ITYPE

- = 1 for nearly uniform, fine sand.
- = 2 for sand with a grain-size distribution similar to that of sand that occurs in nature.
- = 3 for wide ranges in grain sizes.

DEN

= the density of the grain in grams per cubic meter.

DSALT

= the saltation diameter in meters.

DSUSP

= the suspension diameter in meters.

Data Block 33

FORMAT (7E10.3)

CONCF

the fraction of the total concentration of the windblown source that is pollutant. Seven such fractions can be entered on each card image.

Data Block 34

FORMAT (7E10.3)

FDRY

= the fraction of time the source remains dry during each period. Seven such fractions can be entered on each card image.

Data Block 35

FORMAT (7E10.3)

SSCON

the suspension-to-saltation ratio for the source in reciprocal meters. Seven such periods can be entered on each card image. Data Block 36

FORMAT (I5)

ICHO

- a control parameter that indicates whether monthly-average climatological results or episodic results are to be calculated.
- = 1 indicates that monthly-average climatological calculations are to be performed by calling the subroutine DCAL.
- 2 indicates that episodic calculations are to be performed for all the stability classes and periods of interest by calling the subroutine MAXCON.

This version of ATM is dimensioned to accept input data for as many as 40 gages (receptor points) at one time. To compute concentrations at more than 40 locations, Data Blocks 10, 11, and 15 for each new set of 40 gages or fraction thereof can be repeated following Data Block 36. Runs of 320 points have been made routinely at ORNL to prepare concentration isopleths.

This summary of the input data read by ATM should provide sufficient information for the user to produce a corresponding data set applicable to a specific problem. To illustrate the structure of a data set, data are presented in Appendix C of this report for a sample calculation with this model. Note that much of the input data defines the frequency table FREQ for the stability windrose for a single period. Since one will have 80, 96, or 112 card images for each period of interest, data sets can be quite large.

The output from ATM when the sample data is used is given in Appendix F. A more detailed output could have been produced by setting KTAG in Data Block 2 to 1. With that setting, some of the input data will be output. The user will probably wish to exercise this option the first time a new data set is used.

The more detailed output includes the following: a table of the Briggs-Smith dispersion values out to 100 km, the stability wind-rose data for each period, the distance and direction from each source to each receptor gage, the angular spread from each gage to each area source, and the sector fractions for each gage and each area source.

The output always includes the following: the type of dispersion values used; the type of wind data; the number of periods; the location and height of the gages; the location, height, and output of all sources; the stack characteristics for point sources; the wind speeds as functions of height; the sizes of area sources (square meters) and line sources (meters); the afternoon and nocturnal mixing heights; data for each pollutant; the contribution of each type of source (point, area, and line) to concentration and deposition; and the integrated deposition (both wet and dry) and concentration at each gage for all the sources. This last output is listed separately for each pollutant and period.

REFERENCES

- 1. R. A. Bagnold, The Physics of Blown Land and Desert Dunes, Methuen and Co., Ltd, London, 1959.
- 2. A. Baumgartner, "Untersuchungen uber den warme- und wasserhaushalt eines jungen waldes, Berichte des Deutchen Wetterdienstes 5, (1956).
- 3. E. W. Bierly and E. W. Hewson, "Some Restrictive Meteorological Conditions to be Considered in the Design of Stacks," J. Appl. Meteorol., 1 383-390 (1962).
- 4. G. A. Briggs, Some Recent Analyses of Plume Rise Observations, ATDL Contribution No. 38, (December 1970).
- 5. G. A. Briggs, Diffusion Estimation for Small Emissions, NOAA-ERL-ARATDL Contribution No. 79, (May 1973).
- 6. A. C. Chamberlain, Aspects of Travel and Deposition of Aerosol and Vapour Clouds, A.E.R.E., HP/R 1261, HMSO, (1953).
- 7. H. E. Cramer, F. A. Record, and H. C. Vaughan, The Study of the Diffusion of Gases or Aerosols in the Lower Atmosphere, AFCRC-TR-58-239 (May 15, 1958).
- 8. G. T. Csanady, "Deposition of Dust Particles from Industrial Stacks," Aust. J. Appl. Sci. 9, pp. 1-8 (1958).
- 9. G. T. Csanady, Atmospheric Diffusion of Buoyant and Heavy Clouds, NYO-3635-24 (1972).
- 10. W. M. Culkowski and M. R. Patterson, A Comprehensive Atmospheric Transport and Diffusion Model, ORNL/NSF/EATC-17 (April 1976).
- 11. R. M. Davis, et al., A Preliminary Assessment of Coal Utilization in the South, ORNL/TM-6122 (February 1978).
- 12. B. A. Egan, "Turbulent Diffusion in Complex Terrain," p. 124 in Lectures on Air Pollution and Environment Impact Analyses, American Meteorological Society, Boston, 1975.
- 13. R. J. Engelmann, Rain Scavenging of Particulates, U.S.ERDA Report No.10,79382, Hanford Atomic Products Operation (1963).
- 14. F. A. Gifford, "Atmospheric Dispersion Models for Environmental Pollution Applications," American Meteorological Society Workshop on Meteorology and Environmental Assessment, Boston October, 1975.
- 15. F. A. Gifford, Jr., "An Outline of Theories of Diffusion in the Lower Layers of the Atmosphere," Chap. III in *Meteorology and Atomic Energy* ed. by D. Slade, TID-24190 (1968).
- D. A. Gillette; I. H. Blifford, Jr.; and C. R. Fenster, "Measurements of Aerosol Size Distributions and Vertical Fluxes of Aerosols on Land Subject to Wind Erosion, J. Appl. Meteorol. 11, 977 (1972).
- 17. W. F. Hilsmeier and F. A. Gifford, Jr., *Graphs for Estimating Atmospheric Dispersion*, USAEC Report ORO-545 (1962).
- 18. T. Hori (Editor), Studies of Fogs in Relation to Fog-preventing Forest, Hokkaido University, Sapporo, Japan, 1953.
- 19. T. W. Horst, "Surface Depletion Model for Deposition from a Gaussian Plume," pp. 423-433 1974 Symposium on Atmosphere Surface Exchange of Particulate and Gaseous Pollutants, Richland, Wash., CONF-74-0921 (September 4-6, 1974).
- 20. R. P. Hosker, Jr., Estimates of Dry Deposition and Plume Depletion over Forests and Grassland, IAEA-SM-181/19 (November 1973).

- 21. J. S. Irwin, "A Theoretical Variation of the Wind Profile Power-Law Exponent as a Function of Surface Roughness and Stability," *Atmospheric Environment* 13 191-194, (1979).
- 22. S. E. Lindberg, A. W. Andren, R. J. Raridon and W. Fulkerson, "Mass Balance of Trace Elements in Walker Branch Watershed: Relation to Coal-Fired Steam Plants," *Environ. Health Persp.* 12 9-18, (1975).
- 23. D. O. Martin and J. A. Tikvart, "A General Atmospheric Diffusion Model for Estimating the Effects of Air Quality of One or More Sources," APCA Paper 68-148, 61st Annual APCA Meeting, St. Paul, June 1968.
- 24. J. L. McElroy and F. Pooler, St. Louis Dispersion Study, Volume II Analysis, USEPA, NAPCA Publication No. AP-53 (1968).
- 25. M. T. Mills, R. G. Dahlman, and J. S. Olson, Ground Level Air Concentrations from a Tailings Area During a Windstorm, ORNL/TM-4375 (September 1975).
- 26. M. T. Mills and M. Reeves, A Multi-Source Atmospheric Transport Model for Deposition of Trace Contaminants, ORNL-NSF-EATC-2 (October 1973).
- 27. J. K. Munro, Jr. et al., Application of the Unified Transport Model to the Movement of PB, Cd, Zn, Cu, and S Through the Crooked Creek Watershed, ORNL/NSF/EATC-28 (September 1976).
- 28. B. D. Murphy, D. C. Parzyck, and R. J. Raridon, "Estimated Pollutant Loading Patterns and Population Exposures Associated with Power Plant Siting in the South," APCA Meeting, Houston, June 29, 1978.
- 29. NAG Library Manual, Numerical Algorithms Group, Downers Grove, Ill., 1981.
- 30. F. Pasquill, Atmospheric Diffusion, 2nd ed., p. 377, John Wiley & Sons, New York, (1974).
- 31. M. R. Patterson et al., A User's Manual for the FORTRAN IV Version of the Wisconsin Hydrologic Transport Model, ORNL/NSF/EATC-7 (1974).
- 32. M. R. Patterson et al., A User's Manual for UTM-TOX, The Unified Transport Model, ORNL/TM-8182 (1984).
- 33. R. J. Raridon and B. D. Murphy, "Validation of the Atmospheric Transport Model: Comparison of Observed Krypton-85 Concentrations with Those Computed Using a Gaussian Plume Model," Summer Computer Simulation Conf., Denver, July 19-21, 1982.
- 34. E. M. Rupp et al., "Composite Hazard Index for Assessing Limiting Exposures to Environmental Pollutants; Application Through a Case Study," *Environ. Sci. & Tech.* 12, 802-807 (1978).
- 35. W. Schmidt, "Der Massenaustausch in freier Luft und verwandte Erscheinungen," in *Probleme der Kosmischen Physik, Verlag von Henri Grand, Hamburg, (1925).*
- G. A. Sehmel and W. H. Hodgson, "Particle and Gaseous Removal in the Atmosphere by Dry Deposition," Symposium on Atmospheric Diffusion and Air Pollution, Santa Barbara, California, September 9-13, 1974.
- 37. D. H. Slade (Ed.), Meteorology and Atomic Energy 1968, TID-24190 (July 1968).
- 38. W. G. N. Slinn, "On the Dry Deposition of Sea Salt Nuclei," pp. 51-55 in Pacific Northwest Laboratory Annual Report for 1971 to the USERDA Division of Biomedical and Environmental Research, Vol. II, Part 1, BNWL-1651 PT1 (December 1972).
- 39. F. B. Smith, "A Scheme for Estimating the Vertical Dispersion of a Plume from a Source Near Ground Level," Third Meeting of the Panel on Air Pollution Modeling, N.A.T.O Committee on the Challenges of Modern Society, Paris, October 2-3, 1972. Air Pollution Tech. Information Center, USEPA, Research Triangle Park, N. C., 1973.
- 40. L. H. Stinton et al., Environmental Analysis for Pipeline Gas Demonstration Plants, ORNL/TM-6235 (September 1978).

- 41. O. G. Sutton, "A Theory of Eddy Diffusion in the Atmosphere," Proc. Roy. Soc., (London), Ser. A. 135 143-165 (1932).
- 42. D. B. Turner, Workbook of Atmospheric Dispersion Estimates, EPA Office of Air Programs Publ. No. AP-26 (1970).
- 43. D. B. Turner and J. H. Novak, *User's Guide for RAM, Vol. I, EPA-600/8-78-016a* (November 1978).
- 44. G. W. Westley and J. A. Watts (Eds.); The Computing Technology Center Numerical Analyses Library, CTC-39, (October 1970).

APPENDIX A

LIST OF SYMBOLS

APPENDIX A

LIST OF SYMBOLS

С	sand uniformity constant
ď	grain diameter (cm)
D	standard grain diameter (cm)
f	settling velocity of dust particle (m/s)
F _B	buoyancy flux (m ⁴ /s ³)
_	
F_d	fraction of time windblown source remains dry
$F_{pr}(\theta)$	fraction of the time the wind blows from direction θ , with wind speed class r,
	and stability class p
g	gravitational acceleration (m/s²)
h	effective stack height (m)
h _o	actual stack height (m)
k	surface roughness during saltation (cm)
K_x, K_y	eddy diffusivities (m ² /s)
n _p	stability power law parameter
p	stability index
q	volume concentration of particulates (g/m ³)
Q	effective source strength (g/s)
<u>r</u>	stack radius (m)
R	distance from receptor gage to area source centroid (m)
$\mathbf{R_f}$	suspension to saltation ratio (m ⁻¹)
\mathbf{R}_1	distance from receptor gage to nearest boundary of polar area source (m)
R_2	distance from receptor gage to farthest boundary of polar area source (m)
S	temperature profile parameter (s ⁻²)
<u>t</u>	time (s)
$T_{\mathbf{E}}$	air temperature (K)
T_S	stack-gas temperature (K)
u	wind speed in the x-direction (m/s)
$\mathbf{u_t}$	threshold wind speed for saltation (m/s)
v	deposition velocity (m/s)
W	stack ejection velocity (m/s)
$\mathbf{W_f}$	fraction of time only dry deposition occurs
W_w	fraction of time both wet and dry deposition occur
X	distance downwind from source (m)
x*	cutoff distance downwind for plume rise (m)
У	distance crosswind from the plume axis (m)
Z	vertical distance from ground (m)
Δh	plume rise (m)
$\Delta heta$	angular spread of polar area source (radians) as seen from a receptor gage
$oldsymbol{ heta}$	one of sixteen principal compass directions clockwise from north
λ	washout coefficient (s ⁻¹)
$\sigma_{y},\;\sigma_{z}$	horizontal and vertical dispersion (m)
χ	ground-level air concentration (g/m ³)
ω	deposition rate (g/m ² -s)

APPENDIX B PROGRAM LISTING

```
MAIN PROGRAM ATM (AIR TRANSPORT MODEL)
     THIS VERSION IS SET UP TO RUN MORE THAN 40 GAGES, 10 POINT
C *** SOURCES, 10 AREA SOURCES, 10 LINE SOURCES, AND 20 POLLUTANTS.
      LOGICAL SKIPP, SKIPA, SKIPL, SKIPG, SKIPOL
      REAL LSTHA, LFTHA, LSPHI, LFPHI
      REAL LLATDS, LLATMS, LLATSS
      REAL LLATDF, LLATMF, LLATSF
      REAL LLONDS, LLONMS, LLONSS
      REAL LLONDF, LLONMF, LLONSF
      REAL LQIO, KCOVER
      DOUBLE PRECISION ATITLE, SEANAM, GNAME, PNAME, ANAME, LNAME,
      COMMON /C1/ XM(50), SIGTAB(6,50), SIGMAX(6), V(20), DV(20),
           CLAMDA(20), DLAMDA(40,12,20), NDIST, NSTAB
      COMMON /C2/ H
      COMMON /C3/ PI, R, KOUT
      COMMON /C4/ DP(40,10), DA(40,10), DIRP(40,10), DIRA(40,10),
           AREA(10)
      COMMON /C5/ DTH(40,10), R1(40,10), R2(40,10), TH1(40,10),
           TH2(40,10)
      COMMON /C6/ FREQ(12,7,8,16), HGT(10), PQIO(10,20,12), IPAR(20),
           AQIO(10,20,12), LQIO(10,20,12), THALF(20), HMIX(8,12)
      COMMON /C8/ NG, NP, NA, NL, NWS, NPOL, NFSTAB, NWINDS, WW, WF,
           FDRY(12)
      COMMON /C9/ COPT(40,20,12), HTG(40)
      COMMON /C10/ LSTHA(10), LFTHA(10), LSPHI(10), LFPHI(10)
      COMMON /C11/ GTHA(40), GPHI(40), PTHA(10), PPHI(10), ATHA(10),
           APHI(10)
      COMMON /C12/ WQIO(3,5,8), VFALL(3)
      COMMON /C13/ HGA(10), HGL(10)
      COMMON /C14/ KDISP, KCOVER, ROUGH
      COMMON /C15/ SKIPP(10), SKIPA(10), SKIPL(10), SKIPG(40),
           SKIPOL(20)
      COMMON /C16/ KSEA
      COMMON /C18/ ATITLE(10), SEANAM(12), GNAME(40), PNAME(10),
           ANAME(10), LNAME(10), POLNAM(20), COMP(32), F(32,40,10)
      COMMON /C19/ CONCF(3,5), SSCON(3), DEN(3), DSALT(3), DSUSP(3),
           ITYPE(3)
      COMMON /C20/ ST(10), AT(10), RAD(10), VEL(10), PKAPPA(10),
           QKAPPA(10)
      DIMENSION FRACT(12), AVRATE(12), GRATE(40,12), GFRACT(40,12)
       DIMENSION IPTYPE(20), DF1(20), DF2(20), JSTAB(7), WINDSD(8,7,10)
       DIMENSION PURBAN(7), PRURAL(7), WINDS(8), HTA(12), HTN(12)
       DATA PURBAN /0.1,0.15,0.2,0.25,0.25,0.3/
       DATA PURBAN /0.15,0.15,0.20,0.25,0.40,0.60,0.60/
       DATA PRURAL /0.07,0.07,0.10,0.15,0.35,0.55,0.55/
C *** NPOL=NUMBER OF POLLUTANTS
C *** R=EARTH'S RADIUS IN METERS, NG=NUMBER OF RAIN GAUGES, NP=NUMBER
C *** OF POINT SOURCES, NA=NUMBER OF AREA SOURCES, (GLATD, GLATM, GLATS)
       =LATITUDE OF RAIN GAUGE IN DEGREES, MINUTES, AND SECONDS. (GLOND,
        GLONM, GLONS)=LONGITUDE OF RAIN GAUGE IN DEGREES, MINUTES, AND
C ***
        SECONDS. (PLATD, PLATM, PLATS) = LATITUDE OF POINT SOURCE IN DEGREES,
C ***
       MINUTES, AND SECONDS, (PLOND, PLONM, PLONS) = LONGITUDE OF POINT
C ***
        SOURCE IN DEGREES, MINUTES, AND SECONDS. (ALATD, ALATM, ALATS)=
       LATITUDE OF CENTROID OF AREA SOURCE IN DEGREES, MINUTES,
C ***
        AND SECONDS (ALOND, ALONM, ALONS) = LONGITUDE OF CENTROID OF AREA
 C ***
        SOURCE IN DEGREES, MINUTES, AND SECONDS
 C ***
        DP(I,J)=DISTANCE IN METERS FROM GAUGE I TO POINT SOURCE J
 C ***
        DA(I,K)=DISTANCE IN METERS FROM GAUGE I TO CENTROID OF AREA
 C ***
        SOURCE K, DIRP(I,J)=DIRECTION IN DEGREES FROM GAUGE I TO POINT
        SOURCE J(MEASURED CLOCKWISE FROM DUE NORTH)
```

```
C *** DIRA(I,K)=DIRECTION IN DEGREES FROM GAUGE I TO CENTROID OF AREA
C ***
      SOURCE K(MEASURED CLOCKWISE FROM NORTH)
      AREA(K)=AREA OF AREA SOURCE K IN METERS**2
       (LLATDS, LLATMS, LLATSS) = LATITUDE OF THE STARTING POINT OF THE
      LINE SOURCE IN DEGREES, MINUTES, AND SECONDS
      (LLONDS, LLONMS, LLONSS) = LONGITUDE OF THE STARTING POINT OF THE
C ***
      LINE SOURCE IN DEGREES, MINUTES, AND SECONDS
       (LLATDF, LLATMF, LLATSF) = LATITUDE OF THE TERMINATION POINT OF THE
C ***
      LINE SOURCE IN DEGREES, MINUTES, AND SECONDS
C ***
       (LLONDF, LLONMF, LLONSF) = LONGITUDE OF THE TERMINATION POINT OF
C ***
      THE LINE SOURCE IN DEGREES, MINUTES, AND SECONDS
      IPTYPE(M)=1, POLLUTANT M IS A PARTICULATE
C ***
C *** IPTYPE(M)=2, POLLUTANT M IS A GAS
C *** AND PARTICLE SIZE DATA
      IN = 5
      KOUT = 6
      ISWICH = 0
      R = 6.378E+6
      PI = 3.1415927
      PI180 = PI/180.0
       NA=NUMBER OF AREA SOURCES(INCLUDING WINDBLOWN AREA SOURCES)
       NWS=NUMBER OF WINDBLOWN AREA SOURCES
       DATA FOR WINDBLOWN SOURCES LISTED AFTER THAT FOR THE
C ***
       ORDINARY AREA SOURCES
C ***
       IN OTHER WORDS, IF YOU HAVE 4 AREA SOURCES, 2 OF WHICH
C ***
C *** ARE WINDBLOWN, AREA SOURCES 1 AND 2 WILL BE ORDINARY
C *** AND 3 AND 4 WILL BE WINDBLOWN
      READ (IN, 99) ATITLE
      WRITE (KOUT, 98) ATITLE
      NDIST=NUMBER OF DISTANCES IN THE STABILITY TABLE
       NSTAB=NUMBER OF STABILITIES IN THE TABLE
C ***
C ***
       SIGTAB=VARIOUS PASQUILL STABILITIES
       KDISP=1, USE PASQUILL STABILITY TABLE
C ***
       KDISP=2, USE SMITH'S STABILITY FORMULATION WITH MODIFICATION
C ***
C ***
                DUE TO SURFACE ROUGHNESS (SEE R.P. HOSKER'S PAPER)
C *** KDISP=3, USE BRIGGS STABILITIES(SEE GIFFORD'S PAPER IN
C *** NUCLEAR SAFETY)
C *** KCOVER<5 GRASS COVER
       KCOVER>5 FOREST COVER
C ***
C ***
      ROUGH= ROUGHNESS OF THE LAND SURFACE (METERS)
      READ (IN, 97) KDISP, KTAG, KSEA, ROUGH
C *** KTAG=1 WILL PRINT DATA ON WIND DIRECTION FREQUENCY
       TABLES, AREA AND LINE SOURCE PARAMETERS. ONCE RUN , THESE
C *** MAY BE BYPASSED BY KTAG=2
C ***
       HTA=CLIMATOLOGICAL MEAN VALUE OF AFTERNOON MIXING HEIGHT
C *** HTN=NOCTURNAL MIXING HEIGHT
      READ (IN,99970) (HTA(I), I=1, KSEA)
      READ (IN, 99970) (HTN(I), I=1, KSEA)
       CALCULATE MIXING HEIGHT FOR EACH STABILITY CLASS
C *** 4= D(DAYTIME), 5=D(NIGHTTIME)
      DO 100 J=1,KSEA
        HMIX(1,J) = 1.5*HTA(J)
        HMIX(2,J) = HTA(J)
        HMIX(3,J) = HTA(J)
        HMIX(4,J) = HTA(J)
        HMIX(5,J) = (HTA(J)+HTN(J))*0.5
        HMIX(6,J) = HTN(J)
        HMIX(7,J) = HTN(J)
        HMIX(8,J) = HTN(J)
  100 CONTINUE
```

```
IF (KDISP.GT.1) GO TO 200
     WRITE (KOUT, 96)
     GO TO 700
 200 WRITE (KOUT, 95)
      IF (KDISP.EQ.3) GO TO 300
     WRITE (KOUT, 94)
      GO TO 400
 300 WRITE (KOUT, 93)
 400 DO 600 IP=1,NSTAB
        DO 500 I=1,NDIST
          SIGTAB(IP,I) = SIGMA(IP,XM(I),IDUM,ADUM)
 500
        CONTINUE
 600 CONTINUE
 700 IF (KTAG.EQ.2) GO TO 800
      WRITE (KOUT, 92)
      WRITE (KOUT, 91) (XM(I), (SIGTAB(IP, I), IP=1, NSTAB), I=1, NDIST)
 800 IF (KDISP.NE.2) GO TO 900
      WRITE (KOUT, 90) ROUGH
C *** NWINDS=NUMBER OF WIND SPEEDS IN THE FREQUENCY TABLE
C ***
      NDIR=NUMBER OF DIRECTIONS IN THE FREQUENCY TABLE
C *** NFSTAB=NUMBER OF WIND STABILITIES IN THE FREQUENCY TABLE
C *** JSTAB(I)=INDEX OF STABILITIES TO BE USED
 900 READ (IN,81) NWINDS, NDIR, NFSTAB, (JSTAB(I), I=1, NFSTAB)
      WRITE (KOUT, 89) NWINDS, NDIR, NFSTAB, (JSTAB(I), I=1, NFSTAB)
C *** SIGMAX(IP)=MAXIMUM VALUE OF VERTICAL DISPERSION FOR EACH
C STABILITY
      WRITE (KOUT, 88) (SIGMAX(IP), IP=1, NSTAB)
 *** WINDS(I)=WIND SPEED IN METERS/SEC FOR WIND SPEED CLASS I
      READ (IN,70) (WINDS(I),I=1,NWINDS)
         KSEA=NUMBER OF MONTHS OF DATA FOR WIND ROSE
      READ (IN, 87) (SEANAM(ISEA), ISEA=1, KSEA)
      READ (IN, 86) KDUMMY
      DO 1600 ISEA=1,KSEA
        SUM = 0.0
        DO 1200 I=1,NFSTAB
          DO 1100 K=1.NDIR
            READ (IN.85) (FREQ(ISEA,I,J,K),J=1,NWINDS)
            DO 1000 J=1, NWINDS
              SUM = SUM + FREQ(ISEA, I, J, K)
 1000
            CONTINUE
 1100
          CONTINUE
 1200
        CONTINUE
        DO 1500 I=1,NFSTAB
          DO 1400 K=1,NDIR
            DO 1300 J=1, NWINDS
              FREQ(ISEA,I,J,K) = FREQ(ISEA,I,J,K)/SUM
 1300
            CONTINUE
 1400
          CONTINUE
 1500
        CONTINUE
 1600 CONTINUE
      IF (KTAG.EQ.2) GO TO 2000
      DO 1900 ISEA=1,KSEA
        WRITE (KOUT, 84) ISEA, SEANAM(ISEA)
        DO 1800 I=1,NFSTAB
          WRITE (KOUT, 83) JSTAB(I)
          DO 1700 K=1,NDIR
            WRITE (KOUT, 82) K, (FREQ(ISEA, I, J, K), J=1, NWINDS)
          CONTINUE
 1700
 1800
        CONTINUE
 1900 CONTINUE
```

```
2000 READ (IN,81) NG, NP, NA, NL, NWS, NBG
      IF (NG.EQ.0) GO TO 2100
      IF (NP.NE.0) GO TO 2200
      IF (NA.NE.O) GO TO 2200
      IF (NL.NE.0) GO TO 2200
      WRITE (KOUT, 80)
      STOP
2100 WRITE (KOUT, 79)
      STOP
         SKIPG(I)=T GAUGE I NOT USED, =F USED
C ***
C ***
         SKIPP(I)=T POINT SOURCE I NOT USED, =F USED
         SKIPA(I)=T AREA SOURCE I NOT USED, =F USED SKIPL(I)=T LINE SOURCE I NOT USED, =F USED
C ***
 2200 READ (IN, 78) (SKIPG(I), I=1, NG)
      IF (NP.NE.0) READ (IN,78) (SKIPP(I), I=1,NP)
      IF (NA.NE.O) READ (IN,78) (SKIPA(I), I=1,NA)
      IF (NL.NE.0) READ (IN,78) (SKIPL(I), I=1, NL)
 2300 \text{ ISWICH} = \text{ISWICH} + 1
      IF (ISWICH.EQ.1) GO TO 2400
      READ(IN, 81, END=8000) NG
      READ (IN,78) (SKIPG(I),I=1,NG)
 2400 CONTINUE
      WRITE (KOUT, 77)
      WRITE (KOUT.36)
      DO 2500 I=1,NG
        READ (IN, 37) GLATD, GLATM, GLATS, GLOND, GLONM, GLONS,
             HTG(I), GNAME(I)
        IF (SKIPG(I)) GO TO 2500
        WRITE (KOUT, 75) I, GNAME(I), GLATD, GLATM, GLATS, GLOND,
             GLONM, GLONS, HTG(I)
        GTHA(I) = PI180*(GLATD+(GLATM+GLATS/60.0)/60.0)
        GPHI(I) = PI180*(GLOND+(GLONM+GLONS/60.0)/60.0)
 2500 CONTINUE
      IF (ISWICH.GT.1) CALL GEOMET(KTAG)
      IF (ISWICH.GT.1) GO TO 6100
      IF (NP.EQ.0) GO TO 2700
      WRITE (KOUT, 74)
      WRITE (KOUT, 76)
C *** HGT(I)=HEIGHT OF POINT SOURCE I
C *** HGA(K)=HEIGHT OF AREA SOURCE K
C *** HGL(L)=HEIGHT OF LINE SOURCE L
      DO 2600 J=1,NP
        READ (IN, 37) PLATD, PLATM, PLATS, PLOND, PLONM, PLONS,
             HGT(J), PNAME(J)
        IF (SKIPP(J)) GO TO 2600
        WRITE (KOUT, 75) J, PNAME(J), PLATD, PLATM, PLATS, PLOND,
             PLONM, PLONS
        PTHA(J) = PI180*(PLATD+(PLATM+PLATS/60.0)/60.0)
        PPHI(J) = PI180*(PLOND+(PLONM+PLONS/60.0)/60.0)
 2600 CONTINUE
 2700 IF (NA.EQ.0) GO TO 2900
      WRITE (KOUT, 73)
      WRITE (KOUT, 76)
      DO 2800 K=1,NA
        READ (IN, 37) ALATD, ALATM, ALATS, ALOND, ALONM, ALONS,
             HGA(K), ANAME(K)
        IF (SKIPA(K)) GO TO 2800
        WRITE (KOUT, 75) K, ANAME(K), ALATD, ALATM, ALATS, ALOND,
             ALONM, ALONS, HGA(K)
        ATHA(K) = PI180*(ALATD+(ALATM+ALATS/60.0)/60.0)
        APHI(K) = PI180*(ALOND+(ALONM+ALONS/60.0)/60.0)
 2800 CONTINUE
```

```
2900 IF (NL.EQ.0) GO TO 3100
      WRITE (KOUT, 72)
      WRITE (KOUT, 76)
      DO 3000 L=1,NL
       READ (IN.37) LLATDS, LLATMS, LLATSS, LLONDS, LLONMS,
             LLONSS, HGL(L), LNAME(L)
        READ (IN, 37) LLATDF, LLATMF, LLATSF, LLONDF, LLONMF, LLONSF
        IF (SKIPL(L)) GO TO 3000
        WRITE (KOUT, 75) L, LNAME(L), LLATDS, LLATMS, LLATSS,
             LLONDS, LLONMS, LLONSS, HGL(L)
        WRITE (KOUT, 75) L, LNAME(L), LLATDF, LLATMF, LLATSF,
             LLONDF, LLONMF, LLONSF
        LSTHA(L) = PI180*(LLATDS+(LLATMS+LLATSS/60.0)/60.0)
        LFTHA(L) = PI180*(LLATDF+(LLATMF+LLATSF/60.0)/60.0)
        LSPHI(L) = PI180*(LLONDS+(LLONMS+LLONSS/60.0)/60.0)
        LFPHI(L) = PI180*(LLONDF+(LLONMF+LLONSF/60.0)/60.0)
 3000 CONTINUE
 3100 WRITE (KOUT, 71)
      IF (NA.LE.O) GO TO 3300
      READ (IN,70) (AREA(K),K=1,NA)
      WRITE (KOUT, 69)
      DO 3200 K=1,NA
        IF (SKIPA(K)) GO TO 3200
        WRITE (KOUT, 68) K, ANAME(K), AREA(K)
 3200 CONTINUE
 3300 CALL GEOMET(KTAG)
C *** HEIGHT=HEIGHT AT WHICH WIND SPEED IS MEASURED (METERS)
      HEIGHT = 10.
      DIV = 1.0/HEIGHT
      WRITE (KOUT, 64) HEIGHT, (WINDS(M), M=1, NWINDS)
      IF (NP.EQ.0) GO TO 4000
      PKAPPA(J)=PLUME RISE PARAMETER IN THE EFFECTIVE SOURCE
C ***
       CALCULATION FOR EACH POINT SOURCE FOR STABILITIES 1,2,3,4
       QKAPPA(J)=PLUME RISE PARAMETER IN THE EFFECTIVE SOURCE
       CALCULATION FOR EACH POINT SOURCE FOR STABILITIES 5,6
C *** THIS PROGRAM WAS CHANGED TO ALLOW SUBROUTINE PLUME
C *** TO CALCULATE PKAPPA AND QKAPPA.
C *** ST=STACK GAS TEMP(K), AT=AIR TEMP(K)
C *** RAD=RADIUS OF STACK(M), VEL=STACK GAS EJECTION VEL(M/SEC)
      READ (IN,70) (ST(J),J=1,NP)
      READ (IN,70) (AT(J),J=1,NP)
      READ (IN,70) (RAD(J),J=1,NP)
      READ (IN,70) (VEL(J),J=1,NP)
      CALL PLUME(NP)
      WRITE (KOUT, 67)
      WRITE (KOUT, 66)
      DO 3700 I=1,NP
        IF (SKIPP(I)) GO TO 3700
        WRITE (KOUT,65) I, PNAME(I), HGT(I), AT(I), ST(I), RAD(I),
             VEL(I)
        DO 3600 J=1, NFSTAB
          DO 3500 K=1, NWINDS
            IF (KDISP.EQ.1) GO TO 3400
            WINDSD(K,J,I) = WINDS(K)*(DIV*HGT(I))**PRURAL(J)
            GO TO 3500
            WINDSD(K,J,I) = WINDS(K)*(DIV*HGT(I))**PURBAN(J)
 3400
 3500
          CONTINUE
        CONTINUE
 3600
 3700 CONTINUE
      DO 3900 I=1,NP
        IF (SKIPP(I)) GO TO 3900
        WRITE (KOUT, 63) I
```

```
DO 3800 J=1,NFSTAB
         WRITE (KOUT, 62) J, (WINDSD(L, J, I), L=1, NWINDS)
3800
       CONTINUE
3900 CONTINUE
4000 CONTINUE
     READ (IN, 61) NPOL, KCOVER
     IF (KCOVER.GT.5.0) GO TO 4100
     WRITE (KOUT, 60) KCOVER
     GO TO 4200
4100 WRITE (KOUT, 59) KCOVER
4200 CONTINUE
      WRITE (KOUT, 58) (HTA(I), I=1, KSEA)
      WRITE (KOUT, 57) (HTN(I), I=1, KSEA)
      IF (NPOL.GT.0) GO TO 4300
     WRITE (KOUT, 56)
      STOP
         SKIPOL(I)=T POLLUTANT I NOT USED, =F USED
C ***
 4300 READ (IN, 78) (SKIPOL(I), I=1, NPOL)
      READ (IN,55) (IPTYPE(M),DF1(M),DF2(M),THALF(M),IPAR(M),
           POLNAM(M), M=1, NPOL)
      WRITE (KOUT, 67)
      DO 4600 M=1, NPOL
        IF (THALF(M).EQ.0.0) THALF(M) = 1.0E12
        IF (IPAR(M).EQ.0) IPAR(M) = M
        IF (IPTYPE(M).EQ.2) GO TO 4400
        WRITE (KOUT, 54) M, POLNAM(M), DF1(M), DF2(M), THALF(M)
        GO TO 4500
        WRITE (KOUT,53) M, POLNAM(M), DF1(M), DF2(M), THALF(M)
 4400
        IF (IPAR(M).NE.M) WRITE (KOUT, 40) M, IPAR(M)
 4500
 4600 CONTINUE
C *** PQIO(I,M,MON)=EMISSION RATE OF POLLUTANT M DURING MONTH MON FROM
C *** POINT SOURCE I IN GRAMS/SEC
      IF (NP.EQ.0) GO TO 5100
      DO 4800 I=1,NP
        DO 4700 M=1, NPOL
          READ (IN,70) (PQIO(I,M,MON),MON=1,KSEA)
 4700
        CONTINUE
 4800 CONTINUE
      WRITE (KOUT, 67)
      WRITE (KOUT, 52) (MON, SEANAM (MON), MON=1, KSEA)
      DO 5000 I=1,NP
        IF (SKIPP(I)) GO TO 5000
        DO 4900 M=1, NPOL
          IF (SKIPOL(M)) GO TO 4900
          WRITE (KOUT,51) I, M, (PQIO(I,M,MON),MON=1,KSEA)
 4900 CONTINUE
 5000 CONTINUE
C *** AQIO(K,M,MON)=EMISSION RATE OF POLLUTANT M DURING MONTH MON FROM
C *** AREA SOURCE K IN GRAMS/METER**2/SEC
 5100 IF (NA.EQ.0) GO TO 5600
      NAP = NA - NWS
       DO 5300 K=1, NAP
        DO 5200 M=1,NPOL
           READ (IN,70) (AQIO(K,M,MON),MON=1,KSEA)
 5200
        CONTINUE
 5300 CONTINUE
       WRITE (KOUT, 50) (MON, SEANAM (MON), MON=1, KSEA)
       DO 5500 K=1,NAP
         IF (SKIPA(K)) GO TO 5500
         DO 5400 M=1, NPOL
           IF (SKIPOL(M)) GO TO 5400
           WRITE (KOUT, 49) K, M, (AQIO(K, M, MON), MON=1, KSEA)
```

```
5400
       CONTINUE
5500 CONTINUE
C *** LQIO(L,M,MON)=EMISSION RATE OF POLLUTANT M DURING MONTH MON FROM
C *** LINE SOURCE L IN GRAMS/METER/SEC
5600 IF (NL.EQ.0) GO TO 6100
      DO 5800 L=1,NL
        DO 5700 M=1, NPOL
          READ (IN,70) (LQIO(L,M,MON),MON=1,KSEA)
 5700
        CONTINUE
 5800 CONTINUE
      WRITE (KOUT, 67)
      WRITE (KOUT, 48) (MON, SEANAM (MON), MON=1, KSEA)
      DO 6000 L=1, NL
        IF (SKIPL(L)) GO TO 6000
        DO 5900 M=1,NPOL
          IF (SKIPOL(M)) GO TO 5900
          WRITE (KOUT, 47) L, M, (LQIO(L, M, MON), MON=1, KSEA)
        CONTINUE
 5900
 6000 CONTINUE
 6100 IF (NBG.EQ.0) GO TO 6700
      DO 6300 I=1,NG
        DO 6200 M=1, NPOL
          READ (IN, 70) (COPT(I, M, MON), MON=1, KSEA)
        CONTINUE
 6200
 6300 CONTINUE
      WRITE (KOUT, 67)
      WRITE (KOUT. 39) (MON, SEANAM (MON), MON=1, KSEA)
      DO 6600 I=1,NG
         IF (SKIPG(I)) GO TO 6600
        DO 6500 M=1,NPOL
          IF (SKIPOL(M)) GO TO 6400
          TEST = 0.0
           DO 6400 J=1,KSEA
             IF (COPT(I,M,J).GT.0.0) TEST = COPT(I,M,J)
 6400
           CONTINUE
           IF (TEST.EQ.0.0) GO TO 6500
           WRITE (KOUT, 38) I, M, (COPT(I, M, MON), MON=1, KSEA)
 6500
        CONTINUE
 6600 CONTINUE
      GO TO 7100
C *** CONCENTRATIONS ARE SET TO 0 IF NO BG VALUES ARE GIVEN
 6700 DO 7000 I=1,NG
         DO 6900 M=1,NPOL
           DO 6800 MON=1, KSEA
             COPT(I,M,MON) = 0.0
 6800
           CONTINUE
 6900
         CONTINUE
 7000 CONTINUE
 7100 DO 7300 I=1,NG
         CALL FRXTRN(FRACT, AVRATE, KSEA)
         DO 7200 MON=1, KSEA
           GRATE(I, MON) = AVRATE(MON)
           GFRACT(I, MON) = FRACT(MON)
         CONTINUE
  7200
  7300 CONTINUE
       IF (ISWICH.GT.1) GO TO 7700
       IF (NWS.EQ.0) GO TO 7600
       WRITE (KOUT, 71)
       DO 7400 N=1, NWS
         NN = NA - NWS + N
         WRITE (KOUT, 46) NN, N, ANAME(NN)
  7400 CONTINUE
```

```
READ (IN, 45) (ITYPE(I), DEN(I), DSALT(I), DSUSP(I), I=1, NWS)
     WRITE (KOUT, 44) (I, ITYPE(I), DEN(I), DSALT(I), DSUSP(I), I=1, NWS)
     DO 7500 K=1, NWS
       READ (IN, 70) (CONCF(K, M), M=1, NPOL)
       WRITE (KOUT, 43) K, (M, CONCF(K, M), M=1, NPOL)
7500 CONTINUE
     READ (IN, 70) (FDRY (MON), MON=1, KSEA)
     WRITE (KOUT, 42) (MON, FDRY (MON), MON=1, KSEA)
     READ (IN,70) (SSCON(I),I=1,NWS)
     WRITE (KOUT, 41) (I, SSCON(I), I=1, NWS)
     CALL WNDSCE(WINDS)
7600 CONTINUE
     READ (IN.61) ICHO
     IF (ICHO.EQ.2) GO TO 7800
7700 CALL DCAL(PKAPPA, QKAPPA, WINDS, WINDSD, JSTAB, GRATE, GFRACT,
          IPTYPE, DF1, DF2)
     GO TO 7900
7800 CALL MAXCON(PKAPPA, QKAPPA, WINDSD, JSTAB, GRATE, GFRACT,
          IPTYPE, DF1, DF2)
7900 GO TO 2300
8000 STOP
  99 FORMAT (10A8)
  98 FORMAT (1H1, 10X, 10A8)
  97 FORMAT (315, E10.0)
  96 FORMAT (27HO PASQUILL STABILITIES USED/).
  95 FORMAT (46HO PASQUILL STABILITIES NOT USED--STABILITIES F,
          8HOUND IN , 16HSUBROUTINE SIGMA/)
  94 FORMAT (46HO FORMULATION BY HOSKER OF BRIGGS-SMITH DISPER,
          8HSION VAL, 3HUES/)
  93 FORMAT (26HO BRIGGS DISPERSION VALUES/)
  92 FORMAT (45HO DISPERSION COEFFICIENTS FOR STABILITY CLASS/1HO,
          14X, 4HX(M), 15X, 1HA, 14X, 1HB, 14X, 1HC, 14X, 1HD, 14X,
          1HE, 14X, 1HF/)
  91 FORMAT (10X, F9.1, 5X, 6E15.5)
  90 FORMAT (12HO ROUGHNESS=, 2X, E10.3, 2X, 6HMETERS)
  89 FORMAT (1HO, 9X, 22HNUMBER OF WIND SPEEDS=, I5/10X, 8HNUMBER O,
          1HF, 17H WIND DIRECTIONS=, 15/10X, 7HNUMBER, 9HOF WIND S, 11HTABILITIES=, 15/10X, 16HSTABILITIES USED, 3H---, 715)
  88 FORMAT (41HO SIGMAX FOR EACH STABILITY IN THE TABLE=, 7F8.0)
  87 FORMAT (7(2X, A8))
  86 FORMAT (A4)
  85 FORMAT (6X, 8F7.4)
  84 FORMAT (37HO STABILITY WIND ROSE DATA FOR PERIOD, 14, 2X, A8)
  83 FORMAT (50X, 15HSTABILITY CLASS, 15)
  82 FORMAT (1X, 9HDIRECTION, I3, 5X, 6F12.6)
  81 FORMAT (1615)
  80 FORMAT (//10X, 10HNO SOURCES//)
  79 FORMAT (//10X, 9HNO GAUGES//)
  78 FORMAT (16L5)
  77 FORMAT (50HO LATITUDE, LONGITUDE AND HEIGHT OF GAUGE SAMPLING,
          7H POINTS/1HO)
  76 FORMAT (10H ID NUMBER, 6X, 4HNAME, 5X, 8HLATITUDE, 22X,
          7HLONGITU, 2HDE/23X, 7HDEGREES, 3X, 7HMINUTES, 3X,
           7HSECONDS, 3X, 7HDEGREES, 3X, 7HMINUTES, 3X, 7HSECONDS)
  75 FORMAT (110, 2X, A8, 6F10.2, F13.1)
  74 FORMAT (41HO LATITUDE AND LONGITUDE OF POINT SOURCES/)
  73 FORMAT (47HO LATITUDE, LONGITUDE AND HEIGHT OF AREA SOURCE,
           10H CENTROIDS/)
  72 FORMAT (47HO LATITUDE, LONGITUDE AND HEIGHT OF LINE SOURCE.
          10H ENDPOINTS/)
  71 FORMAT (1H0)
```

70 FORMAT (7E10.3)

```
69 FORMAT (32HO AREA SOURCE AREAS IN METERS**2)
68 FORMAT (13H AREA SOURCE, 13, 2X, A8, 2X, 1PE10.3/)
67 FORMAT (1H0/1H0)
66 FORMAT (/36X, 16HSTACK CONDITIONS//8H SOURCE, 5X, 4HNAME, 4X,
        9HHEIGHT(M), 12H AMB TEMP(K), 11H ST TEMP(K), 9H RADIUS(M,
        1H), 14H EXIT VEL(M/S))
65 FORMAT (6H POINT, I3, 2X, A8, F8.1, 1X, 2F11.1, F10.1, F12.2)
64 FORMAT (//33H WIND SPEEDS (M/S) AT HEIGHT OF , F3.0, 2H M//9X,
        8F8.2//)
63 FORMAT (/2X, 27HWIND SPEEDS (M/S) AT POINT . 12, 11H SOURCE HE,
        8HIGHT AS , 23HA FUNCTION OF STABILITY//)
62 FORMAT (7X, 12, 8F8.2)
61 FORMAT (15, F5.0)
60 FORMAT (13HO GRASS COVER, F5.1)
59 FORMAT (14HO FOREST COVER, F5.1)
58 FORMAT (30HO AFTERNOON MIXING HEIGHTS(M)=, 14F5.0)
57 FORMAT (30HO NOCTURNAL MIXING HEIGHTS(M)=, 14F5.0)
56 FORMAT (//10X, 13HNO POLLUTANTS//)
55 FORMAT (15, 3E10.0, 12, 2X, A8)
54 FORMAT (/10X, 18HDATA FOR POLLUTANT, 14, 2X, A8, 1X, 8H(A PARTI,
        1HC, 1HU, 5HLATE)/10X, 18HPARTICLE DIAMETER=, 1PE12.3, 2X,
        7HMICRONS/10X, 17HPARTICLE DENSITY=, 1PE12.3, 2X, 5HG/CM*,
        2H*3/10X, 10HHALF LIFE=, 1PE12.3, 2X, 7HSECONDS)
53 FORMAT (/10X, 18HDATA FOR POLLUTANT, I4, 2X, A8, IX, 7H(A GAS)/
        10X, 25HBOUNDARY LAYER THICKNESS=, 1PE12.3, 2X, 6HMETERS/
        10X, 22HDIFFUSION CONSTANT FOR, 9H WASHOUT=, 1PE12.3, 2X,
        9HMETER**2/, 3HSEC, 10X, 10HHALF LIFE=, 1PE12.3, 2X,
        7HSECONDS)
52 FORMAT (36H1 POINT SOURCE EMISSIONS FOR PERIODS/8(15, 2X, A8))
51 FORMAT (33H0 EMISSION RATE FROM POINT SOURCE, 14, 2X, 7HOF POLL,
        2HUT, 3HANT, 14, 2X, 12HIN GRAMS/SEC/8(1PE15.4))
50 FORMAT (35HO AREA SOURCE EMISSIONS FOR PERIODS/8(15, 2X, A8))
49 FORMAT (32HO EMISSION RATE FROM AREA SOURCE, 14, 2X, 8HOF POLLU,
        1HT, 3HANT, 14, 2X, 17HIN GRAMS/M**2/SEC/8(1PE15.4))
48 FORMAT (35HO LINE SOURCE EMISSIONS FOR PERIODS/8(15, 2X, A8))
47 FORMAT (32HO EMISSION RATE FROM LINE SOURCE, 14, 2X, 8HOF POLLU,
        1HT, 3HANT, 14, 2X, 14HIN GRAMS/M/SEC/8(1PE15.4))
46 FORMAT (13HO AREA SOURCE, 14, 2X, 1H=, 2X, 11HWINDBLOWN S,
        5HOURCE, 14, 2X, A8)
45 FORMAT (110, 3E10.0)
44 FORMAT (////33HOINFORMATION FOR WINDBLOWN SOURCE, 14//(10X,
        6HITYPE=, 14/10X, 8HDENSITY=, E12.4, 2X, 7HG/CM**3/10X,
        19HSALTATION DIAMETER=, E12.4, 2X, 6HMETERS/10X, 7HSUSPENS,
        2HIO, 11HN DIAMETER=, E12.4, 2X, 6HMETERS/))
43 FORMAT (10X, 41HCONCENTRATION FACTOR FOR WINDBLOWN SOURCE,
        15//(10X, 9HPOLLUTANT, 15, 1PE15.4/))
42 FORMAT (10X, 42HFRACTION OF TIME SOURCE REMAINS DRY DURING/(10X,
        6HSEASON, 15, 2X, 1H=, F10.5))
41 FORMAT (///10X, 38HSUSPENSION TO SALTATION RATIOS FOR SOU,
        3HRCE, 14, 2X, 1H=, E12.4, 2X, 7H1/METER)
40 FORMAT (10X, 10HPOLLUTANT, 12, 28H IS THE DAUGHTER OF POLLUTAN,
        2HT , I2)
39 FORMAT (1H1, 42HGAGE BACKGROUND CONCENTRATIONS FOR PERIODS.
        /8(15, 2X, A8))
38 FORMAT (1H , 25HBG CONCENTRATION FOR GAGE, 14, 2X, 9HOF POLLUT,
        2HAN, 1HT, 14, 2X, 13HIN GRAMS/M**3, /8(1PE15.4))
37 FORMAT (7F10.5, 2X, A8)
36 FORMAT (10H ID NUMBER, 6X, 4HNAME, 5X, 8HLATITUDE, 22X,
        7HLONGITU, 2HDE/23X, 7HDEGREES, 3X, 7HMINUTES, 3X,
        7HSECONDS, 3X, 7HDEGREES, 3X, 7HMINUTES, 3X, 7HSECONDS,
        5X, 9HHEIGHT(M))
```

```
BLOCK DATA
                                                                   BLK
                                                                          10
COMMON /C1/ XM(50), SIGTAB(6,50), SIGMAX(6), V(20), DV(20),
                                                                   BLK
                                                                          20
     CLAMDA(20), DLAMDA(40,12,20), NDIST, NSTAB
                                                                   BLK
                                                                          30
DIMENSION SIGTA1(6,19), SIGTA2(6,19), SIGTA3(6,12)
                                                                          40
                                                                   BLK
                                                                          50
EQUIVALENCE (SIGTAB(1,1),SIGTA1(1,1)), (SIGTAB(1,20),SIGTA2(1,1)),BLK
                                                                   BLK
     (SIGTAB(1,39),SIGTA3(1,1))
                                                                          60
DATA NDIST /50/, NSTAB /6/
                                                                   BLK
                                                                          70
DATA SIGMAX /0.320E4,0.160E4,0.800E3,0.500E3,0.200E3,0.100E3/
                                                                   BLK
                                                                          80
DATA XM /1.000E+00,2.000E+00,3.000E+00,4.000E+00,5.000E+00,
                                                                   BLK
                                                                          90
     1.000E+01,1.500E+01,2.000E+01,2.500E+01,3.000E+01,3.500E+01,
                                                                         100
     4.000E+01,4.500E+01,5.000E+01,1.000E+02,2.000E+02,3.000E+02, BLK
                                                                         110
     4.000E+02,5.000E+02,6.000E+02,7.000E+02,8.000E+02,9.000E+02, BLK
                                                                         120
     1.000E+03,1.100E+03,1.200E+03,1.300E+03,1.400E+03,1.600E+03, BLK
                                                                         130
     1.800E+03,2.000E+03,2.500E+03,3.000E+03,3.500E+03,4.000E+03, BLK
                                                                         140
     4.500E+03,5.000E+03,6.000E+03,7.000E+03,8.000E+03,1.000E+04, BLK
                                                                         150
     1.500E+04,2.000E+04,3.000E+04,4.000E+04,5.000E+04,6.000E+04, BLK
                                                                         160
     7.000E+04,8.000E+04,1.000E+05/
                                                                   BLK
                                                                         170
DATA SIGTA1 /7.963E-02.1.000E-01.1.070E-01.9.319E-02.4.744E-02.
                                                                   BLK
                                                                         180
     1.924E-02,1.752E-01,2.000E-01,2.025E-01,1.681E-01,8.856E-02, BLK
                                                                         190
     3.743E-02.2.778E-01,3.000E-01,2.941E-01,2.374E-01,1.276E-01, BLK
                                                                         200
     5.524E-02,3.854E-01,4.000E-01,3.832E-01,3.033E-01,1.653E-01, BLK
                                                                         210
     7.282E-02,4.968E-01,5.000E-01,4.704E-01,3.668E-01,2.021E-01, BLK
                                                                         220
     9.021E-02,1.093E+00,1.000E+00,8.900E-01,6.618E-01,3.773E-01, BLK
                                                                         230
     1.755E-01,1.733E+00,1.500E+00,1.292E+00,9.346E-01,5.435E-01, BLK
                                                                         240
     2.590E-01,2.404E+00,2.000E+00,1.684E+00,1.194E+00,7.042E-01, BLK
                                                                         250
     3.413E-01,3.099E+00,2.500E+00,2.067E+00,1.444E+00,8.610E-01, BLK
                                                                         260
     4.229E-01,3.813E+00,3.000E+00,2.445E+00,1.686E+00,1.015E+00, BLK
                                                                         270
     5.037E-01,4.544E+00,3.500E+00,2.817E+00,1.923E+00,1.166E+00, BLK
                                                                         280
     5.841E-01,5.290E+00,4.000E+00,3.186E+00,2.154E+00,1.313E+00, BLK
                                                                         290
     6.639E-01,6.048E+00,4.500E+00,3.550E+00,2.382E+00,1.462E+00, BLK
                                                                         300
     7.434E-01,6.818E+00,5.000E+00,3.912E+00,2.605E+00,1.607E+00, BLK
                                                                         310
     8.225E-01,1.600E+01,1.090E+01,7.900E+00,4.950E+00,3.250E+00, BLK
                                                                         320
     1.650E+00,3.300E+01,2.000E+01,1.400E+01,8.480E+00,5.600E+00, BLK
                                                                         330
     3.112E+00,6.255E+01,3.129E+01,2.053E+01,1.198E+01,8.129E+00, BLK
                                                                         340
     4.593E+00.9.847E+01,4.299E+01,2.694E+01,1.530E+01,1.059E+01, BLK
                                                                         350
     6.054E+00,1.400E+02,5.500E+01,3.326E+01,1.850E+01,1.300E+01, BLK
                                                                         360
                                                                         370
     7.500E+00/
DATA SIGTA2 /2.113E+02,6.965E+01,3.951E+01,2.137E+01,1.493E+01,
                                                                         380
     8.720E+00,2.994E+02,8.505E+01,4.570E+01,2.414E+01,1.678E+01, BLK
                                                                         390
     9.904E+00,4.047E+02,1.011E+02,5.184E+01,2.682E+01,1.857E+01, BLK
                                                                         400
                                                                         410
     1.106E+01,5.281E+02,1.178E+02,5.794E+01,2.944E+01,2.031E+01, BLK
     1.219E+01,6.696E+02,1.350E+02,6.400E+01,3.200E+01,2.200E+01, BLK
                                                                         420
     1.330E+01,9.152E+02,1.562E+02,6.962E+01,3.421E+01,2.345E+01, BLK
                                                                         430
                                                                         440
     1.430E+01,1.217E+03,1.785E+02,7.517E+01,3.636E+01,2.486E+01, BLK
     1.527E+01,1.583E+03,2.017E+02,8.068E+01,3.846E+01,2.623E+01, BLK
                                                                         450
     1.623E+01,2.018E+03,2.259E+02,8.613E+01,4.050E+01,2.756E+01, BLK
                                                                         460
     1.717E+01,3.126E+03,2.772E+02,9.690E+01,4.448E+01,3.014E+01, BLK
                                                                         470
     1.900E+01,3.200E+03,3.319E+02,1.075E+02,4.830E+01,3.261E+01, BLK
                                                                         480
     2.077E+01,3.200E+03,3.900E+02,1.180E+02,5.200E+01,3.500E+01, BLK
                                                                         490
     2.250E+01,3.200E+03,6.131E+02,1.421E+02,6.022E+01,3.991E+01, BLK
                                                                         500
                                                                         510
     2.506E+01,3.200E+03,8.874E+02,1.653E+02,6.789E+01,4.443E+01, BLK
     2.736E+01,3.200E+03,1.213E+03,1.879E+02,7.514E+01,4.864E+01, BLK
                                                                         520
                                                                         530
     2.947E+01,3.200E+03,1.590E+03,2.100E+02,8.203E+01,5.262E+01, BLK
                                                                         540
     3.143E+01,3.200E+03,1.600E+03,2.316E+02,8.864E+01,5.639E+01, BLK
     3.327E+01,3.200E+03,1.600E+03,2.528E+02,9.500E+01,6.000E+01, BLK
                                                                         550
     3.500E+01,3.200E+03,1.600E+03,2.942E+02,1.052E+02,6.576E+01, BLK
                                                                         560
                                                                         570
     3.782E+01/
                                                                         580
DATA SIGTA3 /3.200E+03,1.600E+03,3.345E+02,1.147E+02,7.105E+01,
     4.038E+01,3.200E+03,1.600E+03,3.738E+02,1.236E+02,7.598E+01, BLK
                                                                         590
     4.274E+01,3.200E+03,1.600E+03,4.500E+02,1.400E+02,8.500E+01, BLK
                                                                         600
     4.700E+01,3.200E+03,1.600E+03,6.161E+02,1.750E+02,9.884E+01, BLK
                                                                         610
     5.422E+01,3.200E+03,1.600E+03,7.700E+02,2.050E+02,1.100E+02, BLK
                                                                         620
```

```
6.000E+01,3.200E+03,1.600E+03,8.000E+02,2.479E+02,1.254E+02, BLK
                                                                                  630
     6.645E+01,3.200E+03,1.600E+03,8.000E+02,2.837E+02,1.376E+02, BLK
                                                                                  640
     7.145E+01,3.200E+03,1.600E+03,8.000E+02,3.150E+02,1.479E+02, BLK
                                                                                  650
     7.558E+01,3.200E+03,1.600E+03,8.000E+02,3.480E+02,1.569E+02, BLK 7.913E+01,3.200E+03,1.600E+03,8.000E+02,3.786E+02,1.649E+02, BLK
                                                                                  660
                                                                                  670
     8.227E+01,3.200E+03,1.600E+03,8.000E+02,4.072E+02,1.721E+02, BLK
                                                                                  680
     8.508E+01,3.200E+03,1.600E+03,8.000E+02,4.600E+02,1.850E+02, BLK
                                                                                  690
      9.000E+01/
                                                                                  700
                                                                            BLK
                                                                                  710
END
```

```
SUBROUTINE DCAL(PKAPPA, QKAPPA, WINDS, WINDSD, JSTAB, GRATE,
                                                                               10
                                                                         DCA
                                                                               20
          GFRACT, IPTYPE, DF1, DF2)
                                                                         DCA
                                                                               30
     LOGICAL SKIPP, SKIPA, SKIPL, SKIPG, SKIPOL
                                                                         DCA
                                                                               40
     REAL LSTHA, LFTHA, LSPHI, LFPHI
                                                                         DCA
                                                                               50
     REAL LQIO, KCOVER
    DOUBLE PRECISION ATITLE, SEANAM, GNAME, PNAME, ANAME, LNAME,
                                                                         DCA
                                                                               60
                                                                         DCA
                                                                               70
     COMMON /C1/ XM(50), SIGTAB(6,50), SIGMAX(6), V(20), DV(20),
                                                                         DCA
                                                                               80
                                                                         DCA
                                                                               90
           CLAMDA(20), DLAMDA(40,12,20), NDIST, NSTAB
                                                                         DCA 100
     COMMON /C2/ H
                                                                         DCA 110
     COMMON /C3/ PI, R, KOUT
                                                                         DCA 120
     COMMON /C4/ DP(40,10), DA(40,10), DIRP(40,10), DIRA(40,10),
                                                                         DCA 130
           AREA(10)
     COMMON /C5/ DTH(40,10), R1(40,10), R2(40,10), TH1(40,10),
                                                                         DCA 140
                                                                         DCA 150
           TH2(40,10)
      COMMON /C6/ FREQ(12,7,8,16), HGT(10), PQIO(10,20,12), IPAR(20),
                                                                         DCA 160
           AQIO(10,20,12), LQIO(10,20,12), THALF(20), HMIX(8,12)
                                                                         DCA 170
      COMMON /C8/ NG, NP, NA, NL, NWS, NPOL, NFSTAB, NWINDS, WW, WF,
                                                                         DCA
                                                                              180
                                                                         DCA 190
           FDRY(12)
      COMMON /C9/ COPT(40,20,12), HTG(40)
                                                                         DCA 200
      COMMON /C10/ LSTHA(10), LFTHA(10), LSPHI(10), LFPHI(10)
                                                                         DCA 210
      COMMON /C11/ GTHA(40), GPHI(40), PTHA(10), PPHI(10), ATHA(10),
                                                                         DCA 220
                                                                         DCA 230
           APHI(10)
                                                                         DCA 240
      COMMON /C12/ WQIO(3,5,8), VFALL(3)
                                                                         DCA 250
      COMMON /C13/ HGA(10), HGL(10)
                                                                         DCA 260
      COMMON /C14/ KDISP, KCOVER, ROUGH
                                                                         DCA 270
      COMMON /C15/ SKIPP(10), SKIPA(10), SKIPL(10), SKIPG(40),
                                                                         DCA 280
           SKIPOL(20)
                                                                         DCA 290
      COMMON /C16/ KSEA
      COMMON /C18/ ATITLE(10), SEANAM(12), GNAME(40), PNAME(10),
                                                                         DCA 300
          ANAME(10), LNAME(10), POLNAM(20), COMP(32), F(32,40,10)
                                                                         DCA
                                                                              310
      DIMENSION DEPP(40,20,12), DEPA(40,20,12), DEPL(40,20,12)
DIMENSION DEPT(40,20,12), DRYDEP(40,20,12), WETDEP(40,20,12)
                                                                         DCA
                                                                              320
                                                                         DCA
                                                                              330
                                                                         DCA
      DIMENSION PKAPPA(10), WINDSD(8,7,10), JSTAB(7), WINDS(8)
     DIMENSION GRATE(40,12), GFRACT(40,12), IPTYPE(20), DF1(20),
                                                                         DCA
                                                                              350
                                                                         DCA
                                                                              360
           DF2(20)
      DIMENSION FREQX(20), COPA(40,20,12), COPL(40,20,12),
                                                                         DCA
                                                                              370
                                                                         DCA
           COPP(40,20,12), QKAPPA(10), SURF(40)
C *** DEPP(I,M,MON)=DEPOSITION RATE: IN GRAMS/METER**2/SEC FOR POLLUTANTDCA
                                                                              390
                                                                         DCA
C *** M.AT SAMPLING POINT I, DURING MONTH MON
                                                                         DCA
                                                                              410
C *** IT1=1 FOR WETFALL CALL IN QQP, IT2=2 FOR DRYFALL CALL IN QQP
                                                                         DCA
                                                                              420
    IT1 = 1
                                                                              430
                                                                         DCA
      IT2 = 2
                                                                         DCA
                                                                              440
      CALL FALL(V, DV, IPTYPE, DF1, DF2)
                                                                         DCA 450
      CALL WASH(IPTYPE, DF1, DF2, GRATE)
                                                                         DCA 460
C ***SURF(N) SPECIFIES SURFACE CONDITIONS AT THE RECEPTOR
                                                                         DCA 470
  ***UNLESS EXPLICITLY OVERRIDDEN VALUES DEFAULT TO KCOVER
                                                                         DCA 480
      DO 10 I=1.NG
                                                                         DCA 490
         SURF(I) = KCOVER
                                                                         DCA
                                                                              500
    10 CONTINUE
                                                                         DCA 510
      IKPM = 1
                                                                         DCA
                                                                              520
      DO 40 I=1.NG
                                                                         DCA
                                                                              530
         DO 30 M=1,NPOL
                                                                         DCA
                                                                               540
            DO 20 MON=1, KSEA
                                                                         DCA
                                                                               550
               DEPP(I,M,MON) = 0.
                                                                         DCA
                                                                               560
               DEPA(I,M,MON) = 0.
                                                                         DCA 570
               DEPL(I,M,MON) = 0.
                                                                         DCA 580
               WETDEP(I,M,MON) = 0.
                                                                         DCA
                                                                              590
               DRYDEP(I,M,MON) = 0.
                                                                          DCA
                                                                               600
                COPP(I,M,MON) = 0.0
                                                                         DCA
                                                                              610
                COPA(I,M,MON) = 0.0
                                                                          DCA 620
                COPL(I,M,MON) = 0.0
```

```
DCA 630
  20
          CONTINUE
                                                                  DCA 640
  30
       CONTINUE
                                                                   DCA 650
  40 CONTINUE
                                                                   DCA 660
     IF (NP.EQ.O) GO TO 230
                                                                   DCA 670
     DO 190 I=1,NG
        IF (SKIPG(I)) GO TO 190
                                                                   DCA
                                                                       680
                                                                   DCA
                                                                        690
        DO 180 MON=1,KSEA
                                                                   DCA
                                                                        700
           ISEA = MON
                                                                   DCA
                                                                       710
           DO 170 M=1.NPOL
                                                                   DCA
                                                                      720
             LL = IPAR(M)
                                                                   DCA 730
              IF (SKIPOL(M)) GO TO 170
      WW-WASHOUT WEIGHT, THE FRACTIONAL AMOUNT OF TIME DURING WHICH BOTHDCA 740
     WASHOUT AND FALLOUT OCCURS
                                                                   DCA 750
 *** WF=FALLOUT WEIGHT, FRACTIONAL AMOUNT OF TIME DURING WHICH ONLY
                                                                   DCA 760
                                                                   DCA 770
C *** FALLOUT OCCURS
                                                                   DCA 780
             ww = GFRACT(I.MON)
                                                                   DCA 790
             WF = 1.0 - WW
                                                                   DCA 800
              CLAMDA(M) = DLAMDA(I, MON, M)
                                                                   DCA 810
              DO 160 J=1,NP
                                                                   DCA 820
                IF (SKIPP(J)) GO TO 160
                FAC1 = PQIO(J,LL,MON)/DP(I,J)
                                                                   DCA 830
                                                                   DCA 840
                FACWET = 2.543*CLAMDA(M)*WW*FAC1
                                                                   DCA 850
                IC = 0
                                                                   DCA 860
                DO 150 II=1.NFSTAB
                                                                   DCA 870
                   FACTOR = 1.0
                                                                   DCA 880
                   LN = 1
                   IF (II.NE.4) GO TO 50
                   IF (JSTAB(5).EQ.4) GO TO 50
                                                                   DCA 900
                                                                   DCA 910
                   FACTOR = 0.5
LN = 2
                                                                   DCA 920
                                                                   DCA 930
DCA 940
DCA 950
                   DO 140 L=1.LN
   50
                      SMA = SIGMA(JSTAB(II),DP(I,J),IKPM,P)
                      FACDRY = 2.032*FAC1/SMA
                      FACEXP = -0.5/SMA**2
                                                                   DCA 960
DCA 970
                      IC = IC + 1
                                                                   DCA 980
                      DO 130 JJ=1.NWINDS
                         DTST = DIRP(I,J) + 11.25
                                                                   DCA 990
                         IF (DTST.GT.360.) DTST = DTST - 360.
                                                                   DCA 1000
                                                                   DCA 1010
                         DTST = DTST/22.51
                         KK = DTST
                                                                   DCA 1020
                                                                   DCA 1030
                         KK = KK + 1
                         IF (FREQ(MON,II,JJ,KK).EQ.0.0) GO TO 130
                                                                DCA 1040
                         IF (JSTAB(II).GT.4) GO TO 60
                                                                  DCA 1050
                         H = HGT(J) + PKAPPA(J)/WINDSD(JJ,II,J)
                                                                 DCA 1060
                         GO TO 70
                                                                   DCA 1070
                         H = HGT(J) + QKAPPA(J)/((WINDSD(JJ,II,J))** DCA 1080
                                                                   DCA 1090
                              .3333333)
                                                                 DCA 1100
                         CONTINUE
   70
                         H = HOLD - HTG(I)*0.5
IF (HTG(I) -
                                                                   DCA 1110
                                                                   DCA 1120
                         IF (HTG(I).LT.0) H = HOLD - HTG(I)
                                                                   DCA 1130
                         IF (HTG(I).GE.HOLD) H = HOLD*0.5
                                                                   DCA 1140
                                                                   DCA 1150
                         IF (H.GT.1500.0) H = 1500.0
                                                                   DCA 1160
                         HH = H
                                                                   DCA 1170
                         IF (IPTYPE(M).EQ.2) GO TO 80
                                                                   DCA 1180
C THE PLUME WILL TILT FOR HEAVY PARTICLES
                         HH = H - V(M)*DP(I,J)/WINDSD(JJ,II,J)
                                                                   DCA 1190
                                                                   DCA 1200
                         IF (HH.LT.0.0) HH = 0.0
                                                                   DCA 1210
                         CONTINUE
   80
                                                                   DCA 1220
                         CC = 0.0
                         TSMA = 2.0*SMA*SMA
                                                                  DCA 1230
```

```
DO 90 ITR=1,10
                                                                        DCA 1240
                             HIM = 2.0*FLOAT(ITR)*HMIX(IC,MON)
                                                                       DCA 1250
                             DMAX = HH + HIM
                                                                        DCA 1260
                             DMIN = HH - HIM
                                                                        DCA 1270
                             CP = DMAX*DMAX/TSMA
                                                                       DCA 1280
                             IF (CP.GT.50.0) CP = 50.0
                                                                       DCA 1290
                             CM = DMIN*DMIN/TSMA
                                                                       DCA 1300
                             IF (CM.GT.50.0) CM = 50.0
                                                                       DCA 1310
                             CN = EXP(-CP) + EXP(-CM)
                                                                       DCA 1320
                             CC = CC + CN
                                                                       DCA 1330
                             IF (ITR.EQ.1) GO TO 90
                                                                       DCA 1340
                             FRAC = CN/CC
                                                                       DCA 1350
                             IF (FRAC.LT.0.01) GO TO 100
                                                                       DCA 1360
                          CONTINUE
  90
                                                                       DCA 1370
                          CONTINUE
                                                                        DCA 1380
  100
                          QQP1 = QQP(JSTAB(II),M,DP(I,J),WINDSD(JJ,II, DCA 1390
                               J),IT1,IPTYPE(M),I,KCOVER)
                                                                       DCA 1400
                          QQP2 = QQP(JSTAB(II),M,DP(I,J),WINDSD(JJ,II, DCA 1410
                               J), IT2, IPTYPE(M), I, KCOVER)
                                                                       DCA 1420
                          XYZ = 0.693/THALF(LL)*DP(I,J)/WINDSD(JJ,II,J)DCA 1430
                          IF (XYZ.GT.50.0) XYZ = 50.0
                                                                       DCA 1440
                          FREQX(LL) = FACTOR*FREQ(MON.II.JJ.KK)/
                                                                       DCA 1450
                               WINDSD(JJ, II, J)
                                                                       DCA 1460
                          IF (LL.NE.M) GO TO 110
                                                                       DCA 1470
                          FREQW = FREQX(M)*EXP(-XYZ)
                                                                       DCA 1480
                          GO TO 120
                                                                       DCA 1490
                          FREQW = FREQX(LL)*(1.0-EXP(-XYZ))
                                                                       DCA 1500
  110
  120
                          XYZ = FACEXP*HH**2
                                                                       DCA 1510
                          IF (XYZ.LT.-50.0) XYZ = -50.0
                                                                       DCA 1520
                          DRY = FREQW*QQP2*FACDRY*(EXP(XYZ)+CC)
                                                                       DCA 1530
                          COPP(I,M,MON) = COPP(I,M,MON) + DRY
                                                                       DCA 1540
                          DRY = DRY*WF*SURF(I)*DV(M)
                                                                       DCA 1550
                          WET = FREQW#QQP1*FACWET
                                                                       DCA 1560
                          DEPP(I.M.MON) = DEPP(I.M.MON) + DRY + WET
                                                                        DCA 1570
                          DRYDEP(I,M,MON) = DRYDEP(I,M,MON) + DRY
                                                                       DCA 1580
                          WETDEP(I,M,MON) = WETDEP(I,M,MON) + WET
                                                                       DCA 1590
                                                                       DCA 1600
  130
                       CONTINUE
                    CONTINUE
                                                                       DCA 1610
  140
                                                                       DCA 1620
                 CONTINUE
  150
                                                                       DCA 1630
  160
              CONTINUE
                                                                       DCA 1640
 170
           CONTINUE
  180
        CONTINUE
                                                                       DCA 1650
  190 CONTINUE
                                                                       DCA 1660
                                                                       DCA 1670
     DO 220 M=1,NPOL
        IF (SKIPOL(M)) GO TO 220
                                                                       DCA 1680
        WRITE (KOUT, 99999) M, POLNAM(M)
                                                                       DCA 1690
        WRITE (KOUT, 99998) (SEANAM (MON), MON=1, KSEA)
                                                                       DCA 1700
        DO 200 I=1.NG
                                                                       DCA 1710
           IF (SKIPG(I)) GO TO 200
                                                                       DCA 1720
           WRITE (KOUT, 99997) I, M, (DEPP(I, M, MON), MON=1, KSEA)
                                                                       DCA 1730
                                                                       DCA 1740
  200
        CONTINUE
        WRITE (KOUT, 99996)
                                                                       DCA 1750
        DO 210 I=1.NG
                                                                       DCA 1760
           IF (SKIPG(I)) GO TO 210
                                                                       DCA 1770
           WRITE (KOUT, 99997) I, M, (COPP(I, M, MON), MON=1, KSEA)
                                                                       DCA 1780
        CONTINUE
                                                                       DCA 1790
 210
  220 CONTINUE
                                                                       DCA 1800
      DEPA(I,M,MON)=DEPOSITION RATE IN GRAMS/METER**2/SEC FOR POLLUTANTDCA 1810
C *** M.AT SAMPLING POINT I.DURING MONTH MON.FOR ALL AREA SOURCES
                                                                       DCA 1820
                                                                       DCA 1830
  230 IF (NA.EQ.O) GO TO 390
     PI8 = PI/8.0
                                                                       DCA 1840
     NDIFF = NA - NWS
                                                                       DCA 1850
     DO 350 I=1,NG
                                                                       DCA 1860
```

DC# 1070

```
DO 340 MON=1,KSEA
                                                                      DCA 1880
                                                                      DCA 1890
          ISEA = MON
          WW = GFRACT(I,MON)
                                                                      DCA 1900
                                                                      DCA 1910
          WF = 1.0 - WW
                                                                      DCA 1920
          DO 330 M=1.NPOL
             IF (SKIPOL(M)) GO TO 330
                                                                      DCA 1930
             CLAMDA(M) = DLAMDA(I,MON,M)
                                                                      DCA 1940
             DO 320 K=1.NA
                                                                      DCA 1950
                IF (SKIPA(K)) GO TO 320
                                                                      DCA 1960
                                                                      DCA 1970
                KW = K - NWS
                                                                      DCA 1980
                H = HGA(K)
                DELA = (R2(I,K)-R1(I,K))/3.
                                                                      DCA 1990
                DELAPA = DELA*PI8*AQIO(K,M,MON)
                                                                      DCA 2000
                FACWET = 2.543*DELAPA*WW*CLAMDA(M)
                                                                      DCA 2010
                DO 310 MM=1,3
                                                                      DCA 2020
                   ADIS = R1(I,K) + FLOAT(MM)*DELA - DELA/2.
                                                                      DCA 2030
                   DO 300 II=1,NFSTAB
                                                                      DCA 2040
                      SMA = SIGMA(JSTAB(II), ADIS, IKPM, P)
                                                                      DCA 2050
                      DPAS = DELAPA/SMA
                                                                      DCA 2060
                                                                      DCA 2070
                      FACDRY = 2.032*DPAS
                      FACEXP = -0.5/SMA**2
                                                                      DCA 2080
                      P = P + 2.0
                                                                      DCA 2090
                      DO 290 JJ=1, NWINDS -
                                                                      DCA 2100
                         IF (K.GT.NDIFF) GO TO 270
                                                                      DCA 2110
                         QQA1 = QQP(JSTAB(II), M, ADIS, WINDS(JJ), IT1,
                                                                      DCA 2120
                              IPTYPE(M),I,KCOVER)
                                                                      DCA 2130
                                                                      DCA 2140
                         QQA2 = QQP(JSTAB(II),M,ADIS,WINDS(JJ),IT2,
                                                                      DCA 2150
                              IPTYPE(M),I,KCOVER)
                         HH = H
                                                                      DCA 2170
                         IF (IPTYPE(M).EQ.2) GO TO 250
                                                                      DCA 2180
                         HH = H - V(M)*ADIS/WINDS(JJ)
                                                                      DCA 2190
                         IF (HH.LT.0.0) HH = 0.0
                                                                      DCA 2200
                         CONTINUE
                                                                      DCA 2210
250
                         XYZ = FACEXP*HH**2
                                                                      DCA 2220
                         IF (XYZ.LT.-50.0) XYZ = -50.0
                                                                      DCA 2230
                         QDRY = FACDRY*QQA2/WINDS(JJ)*EXP(XYZ)
                                                                      DCA 2240
                         QWET = FACWET*QQA1/WINDS(JJ)
                                                                      DCA 2250
                         XYZ = 0.693/THALF(M)*ADIS/WINDS(JJ)
                                                                      DCA 2260
                         IF (XYZ.GT.50.0) XYZ = 50.0
                                                                      DCA 2270
                         DO 260 KK=1,16
                                                                      DCA 2280
                            IF (FREQ(MON, II, JJ, KK). EQ. 0.0) GO TO 260 DCA 2290
                            FFREQ = F(KK,I,K)*FREQ(MON,II,JJ,KK)*
                                                                      DCA 2300
                                 EXP(-XYZ)
                                                                      DCA 2310
                            DRY = FFREQ*QDRY
                                                                      DCA 2320
                            COPA(I,M,MON) = COPA(I,M,MON) + DRY
                                                                      DCA 2330
                            DRY = DRY*WF*SURF(I)*DV(M)
                                                                      DCA 2340
                            WET = FFREQ*QWET
                                                                      DCA 2350
                            DEPA(I,M,MON) = DEPA(I,M,MON) + DRY + WET DCA 2360
                            DRYDEP(I,M,MON) = DRYDEP(I,M,MON) + DRY
                                                                      DCA 2370
                            WETDEP(I,M,MON) = WETDEP(I,M,MON) + WET
                                                                      DCA 2380
                         CONTINUE
                                                                      DCA 2390
260
                         GO TO 290
                                                                      DCA 2400
                         DO 280 KK=1,16
                                                                      DCA 2410
270
                            IF (FREQ(ISEA, II, JJ, KK). EQ. 0.0) GO TO 280 DCA 2420
                            DRY = (1.016*WQIO(KW,M,JJ)*F(KK,I,K)*
                                                                      DCA 2430
                                 FREQ(ISEA,II,JJ,KK)*FDRY(ISEA)*DELA* DCA 2440
                                 (PI/8.)*VFALL(KW)/(SMA*WINDS(JJ)))* DCA 2450
                                 EXP(-((VFALL(KW)/WINDS(JJ))*ADIS-HH)*DCA 2460
                                 *2/(2.*SMA**2))*(2.-2./((1.-0.5*P)* DCA-2470
                                 (WINDS(JJ)*HH/(ADIS*VFALL(KW))-1.)
                                                                      DCA 2480
                                                                      DCA 2490
                                 +2.))
                            COPA(I,M,MON) = COPA(I,M,MON) +
                                                                      DCA 2500
```

```
(DRY/VFALL(KW))
                                                                    DCA 2510
C WET=0.
                                                                     DCA 2520
                            DRYDEP(I,M,MON) = DRYDEP(I,M,MON) + DRY
                                                                    DCA 2530
                            DEPA(I,M,MON) = DEPA(I,M,MON) + DRY DCA 2540
                         CONTINUE
                                                                    DCA 2550
 280
                     CONTINUE
                                                                     DCA 2560
 290
                 CONTINUE
                                                                    DCA 2570
 . 300
              CONTINUE
                                                                     DCA 2580
 310
                                                                  DCA 2590
             CONTINUE '
 320
           CONTINUE
                                                                     DCA 2600
 330
                                                            DCA 2600
DCA 2610
 340
        CONTINUE
                                                                   DCA 2620
DCA 2630
 350 CONTINUE
     DO 380 M=1, NPOL
        IF (SKIPOL(M)) GO TO 380
                                                                     DCA 2640
        WRITE (KOUT, 99995) M, POLNAM(M)
                                                                    .DCA .2650
                                                                     DCA 2660
        DO 360 I=1,NG
           IF (SKIPG(I)) GO TO 360
                                                                    DCA 2670
           WRITE (KOUT, 99997) I, M, (DEPA(I, M, MON), MON=1, KSEA)
                                                                   DCA 2680
                                                                  DCA 2690
  360
        CONTINUE
        WRITE (KOUT, 99994)
                                                                   DCA 2700
        DO 370 I=1.NG
                                                                   DCA 2710
           IF (SKIPG(I)) GO TO 370
                                                                   DCA 2720
                                                                 DCA 2730
           WRITE (KOUT, 99997) I, M, (COPA(I, M, MON), MON=1, KSEA)
                                                                DCA 2740
                                      370
        CONTINUE
                                                                   DCA 2750
  380 CONTINUE
C *** DEPL(I,M,MON)=DEPOSITION RATE IN GRAMS/METER**2/SEC FOR POLLUTANTDCA 2760
C *** M.AT SAMPLING POINT I, DURING MONTH MON, FOR ALL LINE SOURCES DCA 2770
  390 IF (NL.EQ.O) GO TO 520
                                                                     DCA 2780
     DO 480 I=1.NG
                                                                     DCA 2790
        IF (SKIPG(I)) GO TO 480
                                                                     DCA 2800
                                                                     DCA 2810
        DO 470 MON=1.KSEA
                                                                     DCA 2820
           ISEA = MON
                                                                     DCA 2830
           ww = GFRACT(I,MON)
                                                                     DCA 2840
           WF = 1.0 + WW
           DO 460 M=1, NPOL
                                                                     DCA 2850
              IF (SKIPOL(M)) GO TO 460
                                                                     DCA 2860
                                                                  DCA 2870
              CLAMDA(M) = DLAMDA(I,MON,M)
                                                                    DCA 2880
              DO 450 L=1,NL
                 IF (SKIPL(L)) GO TO 450
                                                                    DCA 2890
                                                                    DCA 2900
                 DD = R*SQRT((LSTHA(L)-LFTHA(L))**2+COS(LSTHA(L))* DCA 2910
                      COS(LFTHA(L))*(LFPHI(L)-LSPHI(L))**2)
                                                                    DCA 2920
                                                                     DCA 2930
                 DLEN = DD
                                                                    DCA 2940
                 DD = DD/9.
                 DTHL = (LFTHA(L)-LSTHA(L))/9.

DPHL = (LFPHI(L)-LSPHI(L))/9.
                                                                     DCA 2950
                                                                     DCA 2960
                                                                    DCA 2970
                 DO 440 NN=1.9
                    THAL = LSTHA(L) + FLOAT(NN-1)*DTHL + DTHL/2.
                                                                   DCA 2980
                    PHIL = LSPHI(L) + FLOAT(NN-1)*DPHL + DPHL/2.
                                                                   DCA 2990
                    DL = R*SQRT((GTHA(I)-THAL)**2+COS(GTHA(I))*
                                                                   DCA 3000
                        COS(THAL)*(GPHI(I)-PHIL)**2)
                                                                    DCA 3010
                    A = DD/DL
                                                                     DCA 3020
                                                                     DCA 3030
                    IF (A.GT.0.3927) A = 0.3927
     0.3927=22.5*PI/180.
                                                                     DCA 3040
                                                                    DCA 3050
                    FAC1 = A*LQIO(L,M,MON)
                    FACWET = FAC1*2.543*CLAMDA(M)*WW
                                                                    DCA 3060
                    T1L = (GPHI(I)-PHIL)*COS(GTHA(I))
                                                                    DCA 3070
                                                                    DCA 3080
                    T2L = THAL - GTHA(I)
                                                                    DCA 3090
                    IF (T1L.NE.O.O) GO TO 400
                                                                     DCA 3100
                    IF (T2L.NE.O.O) GO TO 400
                                                                     DCA 3110
                    WRITE (KOUT, 99993)
                    STOP
                                                                     DCA 3120
  400
                    CONTINUE
                                                                     DCA 3130
```

```
DCA 3770
             IF (SKIPG(I)) GO TO 540
             WRITE (KOUT, 99987)
                                                                            DCA 3780
             DO 530 MON=1,KSEA
                                                                            DCA 3790
                DEPT(I,M,MON) = DEPP(I,M,MON) + DEPA(I,M,MON) +
                                                                            DCA 3800
                                                                            DCA 3810
                      DEPL(I,M,MON)
                                                                            DCA 3820
                COPT(I.M.MON) = COPT(I.M.MON) + COPP(I.M.MON) +
                                                                            DCA 3830
                      COPA(I,M,MON) + COPL(I,M,MON)
                WRITE (KOUT, 99986) I, M, MON, SEANAM (MON),
                                                                            DCA 3840
                      DRYDEP(I.M.MON), WETDEP(I,M,MON), DEPT(I,M,MON),
                                                                            DCA 3850
                                                                            DCA 3860
                      COPT(I,M,MON)
C ** THE FOLLOWING LINES PROVIDE FOR A PUNCH OUTPUT IF DESIRED.
                                                                            DCA 3870
         WRITE(7,2186) I,M,MON,SEANAM(MON),COPT(I,M,MON)
                                                                            DCA 3880
                                                                            DCA 3890
C2186 FORMAT(315,2X,A8,1PE15.3)
       WRITE(7,2187) GTHA(I),GPHI(I),I,MON,SEANAM(MON),COPT(I,M,MON)
                                                                            DCA 3900
                                                                            DCA 3910
C2187 FORMAT(2F8.6,2I2,2X,A8,1PE12.3)
                                                                            DCA 3920
  530
             CONTINUE
                                                                            DCA 3930
   540
          CONTINUE
                                                                            DCA 3940
   550 CONTINUE
                                                                            DCA 3950
       RETURN
 99999 FORMAT (11H1 POLLUTANT, I3, 3H, , A8, 5X, 17HPOINT SOURCE DEPO,
                                                                            DCA 3960
            2HSI, 23HTION RATE (GM/M**2/SEC))
                                                                            DCA 3970
 99998 FORMAT (11HO GAGE POL, 12(2X, A8)/10X, 12(2X, A8))
                                                                            DCA 3980
99997 FORMAT (215, 12(1PE10.3)/10X, 12(1PE10.3))
                                                                            DCA 3990
 99996 FORMAT (30X, 47HPOINT SOURCE INCREMENT TO CONCENTRATION (G/M**3,
                                                                            DCA 4000
                                                                            DCA- 4010
            1H))
 99995 FORMAT (11HO POLLUTANT, I3, 3H, , A8, 5X, 17HAREA SOURCE DEPOS, DCA 4020
                                                                            DCA 4030
  • .
            2HIT, 22HION RATE (GM/M**2/SEC))
99994 FORMAT (30X, 47HAREA SOURCE INCREMENT TO CONCENTRATION (G/M**3))
                                                                            DCA 4040
 9993 FORMAT (////10X, 43H****SAMPLING POINT MAY NOT COINCIDE WITH LI.
                                                                            DCA 4050
            2HNE, 12H SOURCE ####//)
                                                                            DCA 4060
                                                                            DCA 4070
 99992 FORMAT (14HO LINE LENGTH=, F10.1, 2H M)
 99991 FORMAT (11HO POLLUTANT, I3, 3H, , A8, 5X, 17HLINE SOURCE DEPOS,
                                                                            DCA 4080
                                                                            DCA 4090
            2HIT, 22HION RATE (GM/M**2/SEC))
 99990 FORMAT (30X, 47HLINE SOURCE INCREMENT TO CONCENTRATION (G/M**3))
                                                                            DCA 4100
 99989 FORMAT (1H1, 10A8)
                                                                            DCA 4110
 99988 FORMAT (11HO POLLUTANT, I3, 3H, , A8/20HOGAGE POL PERIOD, 12X, 6HDRYDEP, 9X, 6HWETDEP, 8X, 9HTOTAL DEP, 11X, 4HCONC/
                                                                            DCA 4120
                                                                            DCA 4130
            30X, 10HG/M**2/SEC, 5X, 10HG/M**2/SEC, 5X, 10HG/M**2/SEC,
                                                                            DCA 4140
                                                                            DCA 4150
            9X, 6HG/M**3)
                                                                            DCA 4160
 99987 FORMAT (1HO)
 99986 FORMAT (315, 2X, A8, 4(1PE15.3))
                                                                            DCA 4170
                                                                            DCA 4180
```

SUBROUTINE FALL(V, DV, IPTYPE, DF1, DF2)	FAL	10
REAL MU, G, KCOVER, KZ(7)	FAL	20
P4	FAL	30
COMMON /C8/ NG, NP, NA, NL, NWS, NPOL, NFSTAB, NWINDS, WW, WF,		40
• FDRY(12)	FAL	50
COMMON /C14/ KDISP, KCOVER, ROUGH	FAL	60
DATA MU /182.7E-6/,G /980.0/	FAL	70
C SUBROUTINE FALL CALCULATES THE TERMINAL VELOCITY OF PARTICLES	FAL	80
C AND THE DEPOSITION VELOCITY OF GASES.	FAL	90
C VDEF IS THE DEFAULT DEPOSITION VELOCITY, NOT INCL. COVER		100
C V(M) IS TERMINAL VELOCITY, DV(M) IS DEPOSITION VEL. INCL.		110
0 00,000 5,000 000 000 000 000 000	FAL	120
C MU=DYNAMIC VISCOSITY OF AIR(G/CM/SEC)=182.7E-6 AT 18C.	FAL	130
$GMU = G/(18.0^{*}MU)$	FAL	140
VDEF = 0.01	FAL	150
DVEFF = KCOVER*VDEF	FAL	160
DO 20 M=1, NPOL	FAL	170
IF (IPTYPE(M).EQ.2) GO TO 10	FAL	180
C CONVERT FROM MICRONS TO CM	FAL	190
D = DF1(M) * 1.0E-4	FAL	200
$V(M) = D^{\frac{1}{2}} 2^{\frac{1}{2}} GMU^{\frac{1}{2}} DF2(M)$	FAL	210
C CONVERT FROM CM/SEC TO M/SEC	FAL	220
V(M) = 0.01 * V(M)	FAL	230
DV(M) = V(M)	FAL FAL	240
IF (DVEFF.GE.V(M)) DV(M) = DVEFF	FAL	250 260
C V(M) IS A TERMINAL VELOCITY FOR PARTICLES AT THIS POINT.	FAL	270
GO TO 20	FAL	280
_10 CONTINUE	FAL	290
V(M) = 0.0	FAL	300
DV(M) = VDEF	FAL	310
20 CONTINUE RETURN	FAL	320
	FAL	330
END	LAL	٥٥٥

	SUBROUTINE FFAC(ROUGH, DIS, FF)	FFA	10
C##	THIS PROGRAM IS DESIGNED TO USE A BICUBIC SPLINE (E02CBF) TO	FFA	20
C##	INTERPOLATE ROUGHNESS LENGTH AND DISTANCE TO GET SMITH'S F-FACTOR.	FFA	30
	DIMENSION A(24), WORK(1000), XX(1), FF(1)	FFA	40
	DATA A /4.271283E+00,-1.6392801E-01,4.6154250E-03,	FFA	50
		FFA	60
		FFA	70
		FFA	80
	1.6063944E-01,-8.0552405E-02,-2.9269821E-03,	FFA	90
	* -4.8329144E-03,2.1975169E-02,-9.0408609E-03,	FFA	100
		FFA	110
	-2:2:0:00000000000000000000000000000000	FFA	120
	4.00203322.034.1310.33.2	FFA	130
	11.6/	FFA.	_
	K = 3	FFA	150
		FFA	160
	L = 5	FFA	170
	$NA = (K+1)^*(L+1)$	FFA	180
•	NWORK = 1000		. •
		FFA	190
	MIC 1 / - 11200 (1100011)	FFA	200
•	YR = ALOG(DIS)	FFA	210
	11 (11.22.17.0) 11.07.0	FFA	220
	IF (YR.GT.11.6) YR=11.6	FFA	230
	CALL EO2CBF(1, 1, K, L, XX, XMIN, XMAX, YR, YMIN, YMAX,	FFA	240
	* FF, A, NA, WORK, NWORK, IFAIL)	FFA	250
•	IF (IFAIL.NE.O) GO TO 10	FFA	260
	RETURN	FFA	270
	10 WRITE (6,99999) ROUGH, DIS, IFAIL	FFA	280
	STOP	FFA	290
9999	99 FORMAT (1X, 30HBICUBIC SPLINE FAILED, ROUGH= , F5.2,	FFA	300
		FFA	310
	END	FFA	320

SUBROUTINE FRATRN(FRACT, A	VRATE, KSEA)		FRX	. 10
DIMENSION FRACT(12), AVRATE	L(12)	•	•	FRX	20
C FRACT IS THE FRACTION OF THE MC	ONTH PRECIP	OCCURS		FRX	30
C AVRATE IS THE AVERAGE RATE OF	PRECIP IN	HUNDRETHS		FRX	40
C OF AN INCH PER HOUR		1: 1	*	FRX	50
DO 10 MONT=1, KSEA	1	Garage Brown Control		FRX	60
FRACT(MONT) = 0.07				· EDV	70
AVRATE(MONT) = 08.5				FRX	80
TO CONTINUE				FRX	90
RETURN	+	(x,y) = (x,y) + (y,y)		FRX	100
END				FRY	

```
GEO
                                                                                 10
      SUBROUTINE GEOMET(KTAG)
C PROGRAM CALCULATES GEOMETRIC VARIABLES FOR POINT AND AREA
                                                                           GEO
                                                                                 20
                                                                           GEO
                                                                                 30
      LOGICAL SKIPP, SKIPA, SKIPL, SKIPG, SKIPOL
      DOUBLE PRECISION ATITLE, SEANAM, GNAME, PNAME, ANAME, LNAME,
                                                                                 40
                                                                           GEO
                                                                           GEO
                                                                                 50
           POLNAM
                                                                           GEO
                                                                                 60
      COMMON /C3/ PI, R, KOUT
      COMMON /C4/ DP(40.10), DA(40.10), DIRP(40.10), DIRA(40.10),
                                                                           GEO
                                                                                 70
                                                                           GEO
                                                                                 80
      COMMON /C5/ DTH(40,10), R1(40,10), R2(40,10), TH1(40,10),
                                                                           GEO
                                                                                 90
                                                                           GEO
                                                                                100
           TH2(40,10)
                                                                           GEO
      COMMON /C8/ NG, NP, NA, NL, NWS, NPOL, NFSTAB, NWINDS, WW, WF,
                                                                                110
                                                                           GEO
                                                                                120
                                                                           GEO
      COMMON /C11/ GTHA(40), GPHI(40), PTHA(10), PPHI(10), ATHA(10),
                                                                                130
                                                                           GEO
                                                                                140
           APHI(10)
      COMMON /C15/ SKIPP(10). SKIPA(10). SKIPL(10), SKIPG(40).
                                                                           GEO
                                                                                150
                                                                           GEO
                                                                                160
           SKIPOL(20)
      COMMON /C18/ ATITLE(10), SEANAM(12), GNAME(40), PNAME(10),
                                                                           GEO
                                                                                170
           ANAME(10), LNAME(10), POLNAM(20), COMP(32), F(32,40,10)
                                                                           GEO
                                                                                180
                                                                           GEO
                                                                                190
      IF (NP.EQ.0) GO TO 60
                                                                           GEO
                                                                                200
      DO 50 I=1,NG
         IF (SKIPG(I)) GO TO 50
                                                                           GEO
                                                                                210
                                                                           GEO
                                                                                220
         DO 40 J=1.NP
                                                                           GEO
                                                                                230
            IF (SKIPP(J)) GO TO 40
            IF (ABS(GTHA(I)-PTHA(J)).GT.0.0524) GO TO 10
                                                                           GEO
                                                                                240
            IF (ABS(GPHI(I)-PPHI(J)).GT.0.0524) GO TO 10
                                                                           GEO
                                                                                250
            DP(I,J) = R*SQRT((GTHA(I)-PTHA(J))**2+COS(GTHA(I))*
                                                                           GEO
                                                                                260
                                                                           GEO
                                                                                270
                 COS(PTHA(J))*(GPHI(I)-PPHI(J))**2)
                                                                           GEO
                                                                                280
            GO TO 20
            DP(I,J) = R*ARCOS(COS(GTHA(I))*COS(PTHA(J))*COS(GPHI(I)
                                                                           GEO
                                                                                290
   10
                 -PPHI(J))+SIN(GTHA(I))*SIN(PTHA(J)))
                                                                           GEO
                                                                                300
   20
            T1P = (GPHI(I)-PPHI(J))*COS(GTHA(I))
                                                                           GEO
                                                                                310
            T2P = PTHA(J) - GTHA(I)
                                                                           GEO
                                                                                320
                                                                           GEO
            IF (T1P.NE.O.O .OR. T2P.NE.O.O) GO TO 30
                                                                                330
            WRITE (KOUT, 99999)
                                                                           GEO
                                                                                340
                                                                                350
            STOP
                                                                           GEO
            DIRP(I.J) = 180.*(ATAN2(T1P, T2P))/PI
                                                                           GEO
                                                                                360
   30
            IF (DIRP(I,J).LT.0.0) DIRP(I,J) = 360. + DIRP(I,J)
                                                                           GEO
                                                                                370
            IF (KTAG.EQ.2) GO TO 40
                                                                           GEO
                                                                                380
            WRITE (KOUT, 99998) I, J, DP(I, J)
                                                                           GEO
                                                                                390
            WRITE (KOUT.99997) I, J, DIRP(I,J)
                                                                           GEO
                                                                                400
                                                                           GEO
                                                                                410
   40
         CONTINUE
                                                                                420
   50 CONTINUE
                                                                           GEO
   60 CONTINUE
                                                                           GEO
                                                                                430
      IF (NA.EQ.O) GO TO 360
                                                                           GEO
                                                                                440
      DO 110 I=1,NG
                                                                           GEO
                                                                                450
                                                                           GEO
                                                                                460
         IF (SKIPG(I)) GO TO 110
                                                                           GEO
                                                                                470
         DO 100 K=1.NA
                                                                                480
            IF (SKIPA(K)) GO TO 100
                                                                           GEO
            IF (ABS(GTHA(I)-ATHA(K)).GT.0.0524) GO TO 70
                                                                           GEO
                                                                                490
            IF (ABS(GPHI(I)-APHI(K)).GT.0.0524) GO TO 70
                                                                           GEO
                                                                                500
            DA(I,K) = R*SQRT((GTHA(I)-ATHA(K))**2+COS(GTHA(I))*
                                                                           GEO
                                                                                510
                 COS(ATHA(K)) * (GPHI(I)-APHI(K)) * 2)
                                                                           GEO
                                                                                520
                                                                           GEO
            GO TO 80
                                                                                530
            DA(I,K) = R*ARCOS(COS(GTHA(I))*COS(ATHA(K))*COS(GPHI(I)
                                                                           GEO
   70
                                                                                540
                 -APHI(K))+SIN(GTHA(I))*SIN(ATHA(K)))
                                                                           GEO
                                                                                550
   80
            T1A = (GPHI(I)-APHI(K))*COS(GTHA(I))
                                                                           GEO
                                                                                560
            T2A = ATHA(K) - GTHA(I)
                                                                           GEO
                                                                                570
            IF (T1A.NE.O.O .OR. T2A.NE.O.O) GO TO 90
                                                                           GEO
                                                                                580
                                                                           GEO
                                                                                590
            WRITE (KOUT, 99996)
            DA(I,K) = 1.0E-5
                                                                           GEO
                                                                                600
                                                                                610
            GO TO 100
                                                                           GEO
```

```
180
            CONTINUE
                                                                         GEO 1180
  190
         CONTINUE
                                                                         GEO 1190
  200 CONTINUE
                                                                         GEO 1200
      DO 290 I=1,NG
                                                                         GEO 1210
         IF (SKIPG(I)) GO TO 290
                                                                         GEO 1220
         DO 280 K=1,NA
                                                                         GEO 1230
            IF (SKIPA(K)) GO TO 280
                                                                         GEO 1240
            DO 270 ID=1.32
                                                                         .GEO 1250
               IF (DTH(I,K).GE.360.) GO TO 260
                                                                         GEO 1260
               IF (COMP(ID).GT.TH1(I,K)) GO TO 210 -
                                                                         GEO 1270
               GO TO 270
                                                                         GEO 1280
               IF (COMP(ID).GT.TH2(I,K)) GO TO 220
  210
                                                                         GEO 1290
               GO TO 230
                                                                         GEO 1300
  220
               F(ID,I,K) = 1.0
                                                                         GEO 1310
               GO TO 280
                                                                         GEO 1320
  230
               F(ID,I,K) = (COMP(ID)-TH1(I,K))/22.5
                                                                         GEO 1330
               ID1 = ID + 1
                                                                         GEO 1340
               IF (ID1.GT.31) GO TO 280
                                                                     GEO 1350
               DO 250 IDP=ID1,32
                                                                       GEO 1360
                  IDS = IDP - 1
                                                                         GEO 1370
                  IF (COMP(IDP).GT.TH2(I,K)) GO TO 240
                                                                         GEO 1380
                  F(IDP,I,K) = 1.0
                                                                         GEO 1390
                  GO TO 250
                                                                         GEO 1400
                  F(IDP,I,K) = (TH2(I,K)-COMP(IDS))/22.5
                                                                         GEO 1410
                  GO TO 280
                                                                         GEO 1420
  250
               CONTINUE
                                                                         GEO 1430
  260
               F(ID,I,K) = 1.0
                                                                         GEO 1440
  270
            CONTINUE
                                                                         GEO 1450
  280
         CONTINUE
                                                                         GEO 1460
  290 CONTINUE
                                                                         GEO 1470
      DO 320 I=1,NG
                                                                         GEO 1480
         IF (SKIPG(I)) GO TO 320
                                                                         GEO 1490
         DO 310 K=1,NA
                                                                         GEO 1500
            IF (SKIPA(K)) GO TO 310
                                                                         GEO 1510
            DO 300 ID=17,32
                                                                         GEO 1520
               IDT = ID - 16
                                                                         GEO 1530
               FTEST = F(IDT, I, K)**2
                                                                         GEO 1540
               IF (FTEST.LT.1.0E-10) F(IDT,I,K) = F(ID,I,K)
                                                                         GEO 1550
  300
            CONTINUE
                                                                         GEO 1560
  310
         CONTINUE
                                                                         GEO 1570
  320 CONTINUE
                                                                         GEO 1580
      IF (KTAG.EQ.2) GO TO 360
                                                                         GEO 1590
      WRITE (KOUT,99990)
                                                                         GEO 1600
      DO 350 I=1,NG
                                                                         GEO 1610
         IF (SKIPG(I)) GO TO 350
                                                                         GEO 1620
         DO 340 K=1,NA
                                                                         GEO 1630
            IF (SKIPA(K)) GO TO 340
                                                                         GEO 1640
            WRITE (KOUT, 99989) I, K
                                                                         GEO 1650
            DO 330 ID=1.16
                                                                         GEO 1660
               FTEST2 = DTH(I,K)/22.5
                                                                         GEO 1670
               TEST3 = F(ID,I,K)
                                                                         GEO 1680
               IF (FTEST2.GE.1.0) FTEST2 = 1.0
                                                                         GEO 1690
               IF (TEST3.GE.1.0) F(ID,I,K) = FTEST2
                                                                         GEO 1700
               WRITE (KOUT, 99988) ID, F(ID, I, K)
                                                                        GEO 1710
  330
            CONTINUE
                                                                         GEO 1720
        CONTINUE
  340
                                                                         GEO 1730
  350 CONTINUE
                                                                         GEO 1740
  360 RETURN
                                                                         GEO 1750
99999 FORMAT (1X, 48H*****SAMPLING POINT MAY NOT COINCIDE WITH POINT, GEO 1760
          2HSO, 9HURCE****)
                                                                         GEO 1770
99998 FORMAT (10X, 29HDISTANCE IN METERS FROM GAUGE, I3, 1X, 6HTO POI, GEO 1780
```

* 2HNT, 7H SOURCE, I3, 1X, 1H=, E10.3)	GEO	1790
99997 FORMAT (10X, 42HDIRECTION IN DEG. CW FROM NORTH FROM GAUGE, 13,	GEO	1800
* 1X, 15HTO POINT SOURCE, I3, 1X, 1H=, E10.3/)	GEO	1810
99996 FORMAT (10X, 47HSAMPLING POINT COINCIDES WITH AREA SOURCE CENTR,	GEO	1820
* 2HOI, 1HD)	GEO	1830
99995 FORMAT (10X, 29HDISTANCE IN METERS FROM GAUGE, 13, 9H TO AREA,	GEO	1840
* 2HSO, 4HURCE, I3, 1X, 1H=, E10.3)	GEO	1850
99994 FORMAT (10X, 42HDIRECTION IN DEG. CW FROM NORTH FROM GAUGE, I3,	GEO	1860
* 1X, 14HTO AREA SOURCE, I3, 1X, 1H=, E10.3)	GEO	1870
99993 FORMAT (10X, 46HANGULAR SPREAD(GREATER THAN 2 RADIANS) FROM GA,	GEO	1880
* 1HU, 2HGE, I3, 1X, 7HTO AREA, I3, 1X, 1H=, E10.3/10X,	GEO	1890
* 9HR1=0.0 R, 2H2=, 1X, E10.3)	GEO	1900
99992 FORMAT (10X, 31HANGULAR SPREAD =2*PI FROM GAUGE, I3, 1X,	GEO	1910
* 6HTO ARE, 1HA, I3/10X, 11HR1=0.0 R2=, 1X, E10.3)	GEO	1920
99991 FORMAT (10X, 46HANGULAR SPREAD(LESS THAN 2 RADIANS) FROM GAUGE,	GEO	1930
* I3, 1X, 7HTO AREA, I3, 1X, 1H=, E10.3/10X, 3HR1=, 1X,	GEO	1940
* E10.3, 2X, 3HR2=, 1X, E10.3)	GEO	1950
99990 FORMAT (1HO, 10X, 33HSECTOR FRACTIONS FOR AREA SOURCES/1HO)	GEO	1960
99989 FORMAT (1HO, 10X, 26HSECTOR FRACTIONS FOR GAUGE, I3, 1X,	GEO	1970
* 6HAND AR, 9HEA SOURCE, I3/)	GEO	1980
99988 FORMAT (10X, 19HFRACTION FOR SECTOR, I3, 1X, 1H=, F10.5)	GEO	1990
END	GEO	2000

```
SUBROUTINE MAXCON(PKAPPA, QKAPPA, WINDSD, JSTAB, GRATE, GFRACT,
                                                                           10
                                                                      MAX
                                                                           20
           IPTYPE, DF1, DF2)
      LOGICAL SKIPP, SKIPA, SKIPL, SKIPG, SKIPOL
                                                                      XAM
                                                                           30
                                                                      MAX
                                                                           40
      DIMENSION PKAPPA(10), WINDSD(8,7,10), JSTAB(7), CP1(40,10)
                                                                      MAX
                                                                           50
      DIMENSION GRATE(40.12), GFRACT(40,12), IPTYPE(20), DF1(20), DF2(20)
                                                                     MAX
                                                                           60
                                                                      MAX
                                                                           70
      DIMENSION QKAPPA(10)
      COMMON /C1/ XM(50), SIGTAB(6,50), SIGMAX(6), V(20), DV(20),
                                                                      MAX
                                                                           80
                                                                      XAM
                                                                           90
           CLAMDA(20), DLAMDA(40,12,20), NDIST, NSTAB
                                                                      MAX 100
       COMMON /C2/ H
       COMMON /C3/ PI, R, KOUT
                                                                      MAX 110
       COMMON /C4/ DP(40,10), DA(40,10), DIRP(40,10), DIRA(40,10).
                                                                      MAX 120
                                                                      MAX 130
           AREA(10)
       COMMON /C6/ FREQ(12,7,8,16), HGT(10), PQIO(10,20,12),
                                                                     MAX 140
      * AQIO(10,20,12), LQIO(10,20,12), THALF(20), HMIX(8,12)
                                                                     MAX 150
      COMMON /C8/ NG, NP, NA, NL, NWS, NPOL, NFSTAB, NWINDS, WW, WF,
                                                                     MAX 160
                                                                     MAX 170
          FDRY(12)
                                                                     MAX
       COMMON /C15/ SKIPP(10), SKIPA(10), SKIPL(10), SKIPG(40),
                                                                          190
                                                                     MAX
                                                                           200
           SKIPOL(20)
                                                                      MAX
                                                                           210
       COMMON /C16/ KSEA
       CALL FALL(V, DV, IPTYPE, DF1, DF2)
                                                                      MAX
                                                                          220
       IF (NP.EQ.O) GO TO 130
                                                                      MAX
                                                                          230
                                                                      MAX 240
       IKPM = 1
                                                                      MAX 250
       DO 20 I=1,40
                                                                      MAX 260
         DO 10 J=1,10
                                                                      MAX 270
            CP1(I,J) = 0.0
                                                                      MAX 280
         CONTINUE
· · · 10
                                                                  .: MAX 290
    20 CONTINUE
       DO 120 I=1.NG
                                                                      MAX
                                                                           300
                                                                      MAX 310
          IF (SKIPG(I)) GO TO 120
                                                                      MAX 320
          DO 110 M=1, NPOL
                                                                  · MAX 330
            IF (SKIPOL(M)) GO TO 110 ·
                                                                      MAX
                                                                           340
             DO 100 MON=1,KSEA
                                                                      MAX
                                                                           350
               DO 90 JWD=1,360,5
                                                                      MAX
                                                                           360
                  DO 80 JJ=1.NWINDS
                                                                      MAX
                                                                           370
                     DO 70 II=1.NFSTAB
                                                                      MAX
                                                                           380
                        SUM = 0.0
                                                                      MAX
                                                                           390
                        IOZ = JSTAB(II)
                                                                      MAX
                                                                           400
                        DO 60 J=1.NP
                                                                      MAX
                                                                           410
                           IF (SKIPP(J)) GO TO 60
                           IF (JSTAB(II).GT.4) GO TO 30
                                                                      MAX 420
                           H = HGT(J) + PKAPPA(J)/WINDSD(JJ,II,J)
                                                                      MAX 430
                                                                      MAX 440
                           GO TO 40
                                                                      MAX 450
                           H = HGT(J) + QKAPPA(J)/((WINDSD(JJ,II,J))**
    30
                                                                      MAX
                                                                           460
                                •3333333)
                                                                      MAX
                                                                           470
                           CONTINUE
     40
                                                                      MAX
                                                                           480
                           IF (H.GT.1500.0) H = 1500.0
                                                                      MAX
                                                                           490
                           HH = H
                                                                      MAX
                                                                           500
                           DIS = DP(I,J)
                                                                      MAX
                                                                           510
                           DIR = DIRP(I.J)
                           CALL SIGA(DIR, DIS, IQZ, SIGY, JWD, DIS2)
                                                                      MAX
                                                                           520
                           IF (IPTYPE(M).EQ.2) GO TO 50
                                                                      MAX
                                                                           530
                                                                      MAX
                                                                           540
 C THE PLUME WILL NOW TILT FOR HEAVY PARTICLES
                                                                      MAX 550
                           HH = H - V(M)*DIS2/WINDSD(JJ,II,J)
                                                                      MAX 560
                           IF (HH.LT.0.0) HH = 0.0
                                                                      MAX 570
                           CONTINUE
    50
                                                                      MAX 580
                           SMA = SIGMA(JSTAB(II),DIS2,IKPM,P)
                           DRY1 = 0.5*(HH/SMA)**2
                                                                      MAX 590
                           IF (DRY1.GT.50.0) DRY1 = 50.0
                                                                      MAX 600
                                                                     MAX 610
                           DRY1 = PQIO(J,M,MON)*SIGY*EXP(-DRY1)
                                                                      MAX 620
                            DRY2 = 3.14*SMA*WINDSD(JJ,II,J)
```

```
MAX 630
MAX 640
                              TAX = DRY1/DRY2*EXP(-0.693/THALF(M)*DIS/
                                WINDSD(JJ,II,J))
                              SUM = SUM + TAX
                                                                                 MAX 650
                              IF (SUM.LE.CP1(I,M)) GO TO 60
                                                                                 MAX 660
                              CP1(I,M) = SUM
                                                                                 MAX 670
                                                                                 MAX 680
                              LMON = MON
                              LJWD = JWD
                                                                                 MAX 690
                              LJJ = JJ
                                                                                 MAX 700
                              LII = II
                                                                                 MAX 710
                              LKK = J
                                                                                 MAX 720
                           CONTINUE
                                                                                 MAX 730
   60
                        CONTINUE
                                                                                 MAX 740
   70
                    CONTINUE
                                                                                 MAX
                                                                                       750
   80
   90
                 CONTINUE
                                                                                 MAX
                                                                                       760
  100
             CONTINUE
                                                                                 MAX
                                                                                       770
             WRITE (KOUT,99998) LMON
WRITE (KOUT,99997) LJWD
WRITE (KOUT,99997) LJWD
                                                                                 MAX
                                                                                       780
                                                                                 MAX 790
                                                                                 MAX 800
             WRITE (KOUT,99996) WINDSD(LJJ,LII,LKK)
                                                                                 MAX 810
             WRITE (KOUT, 99995) LII
                                                                                 MAX 820
             WRITE (KOUT, 99994) CP1(I,M)
                                                                                 MAX 830
          CONTINUE
                                                                                 MAX 840
  110
  120 CONTINUE
                                                                                 MAX 850
  130 RETURN
                                                                                 MAX 860
99999 FORMAT (10X, 38HMAXIMUM HOURLY CONCENTRATION FOR GAUGE, 14, 1X,
                                                                                 MAX 870
    • 13HAND POLLUTANT, 14, 1X, 16HOCCURS DURING---)
                                                                                 MAX 880
99998 FORMAT (10X, 5HMONTH, I5)
99997 FORMAT (10X, 14HWIND DIRECTION, I5)
99996 FORMAT (10X, 10HWIND SPEED, F10.3)
99995 FORMAT (10X, 9HSTABILITY, I5)
99994 FORMAT (10X, 14HCONCENTRATION=, E10.3, 8HGMS/M**3)
                                                                                 MAX 890
                                                                                 MAX
                                                                                       900
                                                                                 MAX 910
                                                                                 MAX 920
MAX 930
                                                                                 MAX 940
      END
```

```
NAG LIBRARY ROUTINES
     SUBROUTINE EO2CBF(MFIRST, MLAST, K, L, X, XMIN, XMAX, Y,
                                                              01052000
    * YMIN, YMAX, FF, A, NA, WORK, NWORK, IFAIL)
                                                                02104000
     MARK 7 RELEASE. NAG COPYRIGHT 1978.
C
                                                                03156000
     EDITED BY JOYCE CLARKE OXFORD OEG NUCLEAR PHYSICS 05TH NOV 1976
С
                 FORTRAN MACRO VERSION FDIA26.TEC
С
                                                                 04208000
C
     THIS SUBROUTINE EVALUATES A POLYNOMIAL OF DEGREE K AND L
                                                                05260000
     RESPECTIVELY IN THE INDEPENDENT VARIABLES X AND Y. THE
C
                                                                06312000
     POLYNOMIAL IS GIVEN IN DOUBLE CHEBYSHEV SERIES FORM
                                                                07364000
     A(I,J) • TI(XCAP) • TJ(YCAP),
                                                                08416000
     SUMMED OVER I = 0,1,...K AND J = 0,1,...L WITH THE CONVENTION
                                                                09468000
C
     THAT TERMS WITH EITHER I OR J ZERO ARE HALVED AND THE TERM
C
                                                                10520000
     WITH BOTH I AND J ZERO IS MULTIPLIED BY 0.25. HERE TI(XCAP)
                                                                11572000
     IS THE CHEBYSHEV POLYNOMIAL OF THE FIRST KIND OF DEGREE I
                                                                12624000
     WITH ARGUMENT XCAP=((X - XMIN) - (XMAX - X))/(XMAX - XMIN).
                                                                13676000
     TJ(YCAP) IS DEFINED SIMILARLY. THE COEFFICIENT A(I,J)
C
                                                                14728000
     SHOULD BE STORED IN ELEMENT (L' + 1)^*I + J + 1 OF THE SINGLE
C
                                                                15780000
C
     DIMENSION ARRAY A. THE EVALUATION IS PERFORMED FOR A SINGLE
                                                                16832000
     GIVEN VALUE OF Y WITH EACH X VALUE GIVEN IN X(R). FOR R =
                                                                17884000
C
C
     MFIRST, MFIRST+1,...,MLAST.
                                                                18936000
C
                                                                19988000
C
     STARTED - 1978.
                                                                 21040000
     COMPLETED - 1978.
                                                                22092000
C
C
     AUTHOR - GTA.
                                                                23144000
                                                                24196000
C
     .. SCALAR ARGUMENTS ..
                                                                25248000
     REAL XMAX, XMIN, Y, YMAX, YMIN
                                                                 26300000
     INTEGER IFAIL, K. L. MFIRST, MLAST, NA. NWORK
                                                                27352000
                                                                 28404000
     .. ARRAY ARGUMENTS ..
C
     REAL A(NA), FF(MLAST), WORK(NWORK), X(MLAST)
                                                                 29456000
                                                                 30508000
C
                                                                 31560000
     .. LOCAL SCALARS ..
     DOUBLE PRECISION SRNAME
                                                                 32612000
     REAL D, XCAP, YCAP
                                                                 33664000
     INTEGER I, IERROR, KP1, LP1, M, R
                                                                 34716000
C
     .. FUNCTION REFERENCES ..
     INTEGER POIAAF
     .. SUBROUTINE REFERENCES ..
     E02AEF
C
                                                                39976000
     DATA SRNAME /8H EO2CBF /
                                                                41028000
     KP1 = K + 1
                                                                42080000
                                                                43132000
     LP1 = L + 1
     M = MLAST - MFIRST + 1
                                                                44184000
                                                                45236000
     CHECK THAT THE INTEGER INPUT PARAMETERS HAVE REASONABLE
                                                                46288000
                                                                47340000
     VALUES
                                                                 48392000
                                                                49444000
                                                                 50496000
    IF (M.LE.O .OR. K.LT.O .OR. L.LT.O .OR. NA.LT.KP1*LP1 .OR.
     • NWORK.LT.KP1) GO TO 80
C
     CHECK THAT THE Y RANGE IS REASONABLE AND THAT THE GIVEN
                                                                53652000
C
     VALUE OF Y IS NOT OUTSIDE IT
C
                                                                54704000
     IERROR = 2
C
                                                                 56808000
     IF (YMIN.GE.YMAX .OR. Y.LT.YMIN .OR. Y.GT.YMAX) GO TO 80
                                                                 57860000
     D = XMAX - XMIN
                                                                58912000
                                                                59964000
C
     CHECK THAT THE X RANGE IS REASONABLE AND THAT NONE OF
                                                                61016000
C
     THE GIVEN VALUES OF X IS OUTSIDE IT
                                                                62068000
```

```
C
                                                                      63120000
     IERROR = 3
                                                                      64172000
     IF (D.LE.O.OE+O) GO TO 80
                                                                      65224000
      DO 20 R=MFIRST.MLAST
                                                                      66276000
        IF (X(R).LT.XMIN .OR. X(R).GT.XMAX) GO TO 80
                                                                      67328000
   20 CONTINUE
                                                                     68380000
C
                                                                      69432000
      CALCULATE YCAP, THE NORMALIZED VALUE OF Y
Ç
                                                                      70484000
C
                                                                      71536000
     YCAP = ((Y-YMIN)-(YMAX-Y))/(YMAX-YMIN)
                                                                      72588000
      IERROR = 1
                                                                      73640000
     R = -L
                                                                      74692000
C
                                                                      75744000
     EVALUATE THE COEFFICIENTS OF THE POLYNOMIAL FOR THE GIVEN Y
C
                                                                      76796000
                                                                      77848000
     DO 40 I=1,KP1
                                                                      78900000
        R = R + LP1
                                                                      79952000
        CALL E02AEF(LP1, A(R), YCAP, WORK(I), IERROR)
                                                                      81004000
        IERROR = IERROR + 1
TF (TERROR NE.1) GO TO 80
                                                                      82056000
                                                                      83108000
   40 CONTINUE
                                                                      84160000
C
                                                                      85212000
     EVALUATE THE POLYNOMAL AT THE GIVEN X VALUES
С
                                                                      86264000
С
                                                                      87316000
     DO 60 R=MFIRST,MLAST
                                                                      88368000
        XCAP = ((X(R)-XMIN)-(XMAX-X(R)))/D
                                                                      89420000
        IERROR = 1
                                                                      90472000
        CALL EO2AEF(KP1, WORK, XCAP, FF(R), IERROR)
                                                                      91524000
        IF (IERROR.EQ.O) GO TO 60
                                                                      92576000
        IERROR = 3
        GO TO 80
                                                                      94680000
   60 CONTINUE
                                                                     95732000
   80 IFAIL = PO1AAF(IFAIL, IERROR, SRNAME)
                                                                      96784000
     RETURN
                                                                      97836000
     END
                                                                      98888000
     SUBROUTINE EO2AEF(NPLUS1, A, XCAP, P, IFAIL)
                                                                      01123000
C
     NAG LIBRARY SUBROUTINE E02AEF
                                                                      02246000
C
                                                                      03369000
C
     EO2AEF EVALUATES A POLYNOMIAL FROM ITS CHEBYSHEV-
                                                                      04492000
C
     SERIES REPRESENTATION.
                                                                      05615000
C
                                                                      06738000
C
     CLENSHAW METHOD WITH MODIFICATIONS DUE TO REINSCH
                                                                      07861000
C
     AND GENTLEMAN.
                                                                      08984000
C
                                                                      10107000
C
     USES NAG LIBRARY ROUTINES POIAAF AND XO2AAF.
                                                                      11230000
C
     USES INTRINSIC FUNCTION ABS.
                                                                      12353000
С
                                                                      13476000
C
     STARTED - 1973.
                                                                      14599000
С
     COMPLETED - 1976.
                                                                      15722000
C
     AUTHOR - MGC AND JGH.
                                                                      16845000
C
                                                                      17968000
С
     NAG COPYRIGHT 1975
                                                                      19091000
С
     EDITED BY JOYCE CLARKE OXFORD OEG NUCLEAR PHYSICS 05TH NOV 1976
C
                   FORTRAN MACRO VERSION FDIA26.TEC
C
     MARK 5 RELEASE
                                                                      20214000
     MARK 7 REVISED IER-140 (DEC 1978)
                                                                      20775000
     INTEGER NPLUS1, IFAIL, PO1AAF, IERROR, K, KREV, N, NPLUS2
                                                                      21337000
     DOUBLE PRECISION SRNAME
                                                                      22460000
     REAL A(NPLUS1), XCAP, P, XO2AAF, ABS, BK, BKP1, BKP2, DK,
                                                                      23583000
     * ETA, FACTOR
                                                                      24706000
     DATA SRNAME /8H E02AEF /
                                                                      25829000
C
                                                                      26952000
```

```
IERROR = 0
                                                                            28075000
      ETA = XO2AAF(ETA)
                                                                            29198000
C
      INSERT CALL TO XO2AAF
                                                                            30321000
                                                                            31444000
C
      ETA IS THE SMALLEST POSITIVE NUMBER SUCH THAT
C
                                                                            32567000
      THE COMPUTED VALUE OF 1.0 + ETA EXCEEDS UNITY.
C
                                                                            33690000
                                                                            34813000
      IF (NPLUS1.GE.1) GO TO 10
                                                                            35037000
      IERROR = 2
                                                                            35261000
      GO TO 160
                                                                            35485000
   10 IF (ABS(XCAP).LE.1.0+4.0*ETA) GO TO 20
                                                                            35709000
                                                                            37059000
      IERROR = 1
      P = 0.0
                                                                            38182000
      GO TO 160
                                                                            39305000
   20 IF (NPLUS1.GT.1) GO TO 40
                                                                            40428000
      P = 0.5 * A(1)
                                                                            41551000
                                                                            42674000
      GO TO 160
   40 N = NPLUS1 - 1
                                                                            43797000
      NPLUS2 = N + 2
                                                                            44920000
                                                                            46043000
      K = NPLUS2
      IF (XCAP.GT.0.5) GO TO 120
                                                                            47166000
                                                                            48289000
      IF (XCAP.GE.-0.5) GO TO 80
                                                                            49412000
C
      GENTLEMAN*S MODIFIED RECURRENCE.
C
                                                                            50535000
                                                                            51658000
      FACTOR = 2.0*(1.0+XCAP)
                                                                            52781000
                                                                            53904000
      DK = 0.0
                                                                            55027000
      BK = 0.0
      DO 60 KREV=1,N
                                                                            56150000
                                                                            57273000
         DK = A(K) - DK + FACTOR*BK
                                                                            58396000
         BK = DK - BK
                                                                            59519000
   60 CONTINUE
                                                                            60642000
      P = 0.5 \text{ A}(1) - DK + 0.5 \text{ FACTOR} \text{ BK}
                                                                            61765000
      GO TO 160
                                                                            62888000
C
                                                                            64011000
C
      CLENSHAW*S ORIGINAL RECURRENCE.
                                                                            65134000
                                                                            66257000
   80 FACTOR = 2.0*XCAP
                                                                            67380000
      BKP1 = 0.0
                                                                            68503000
                                                                            69626000
      BK = 0.0
                                                                            70749000
      DO 100 KREV=1, N
                                                                            71872000
         K = K - 1
                                                                            72995000
         BKP2 = BKP1
                                                                            74118000
         BKP1 = BK
         BK = A(K) - BKP2 + FACTOR*BKP1
                                                                            75241000
                                                                            76364000
  100 CONTINUE
      P = 0.5*A(1) - BKP1 + 0.5*FACTOR*BK
                                                                            77487000
                                                                            78610000
      GO TO 160
                                                                            79733000
C
С
      REINSCH*S MODIFIED RECURRENCE.
                                                                            80856000
                                                                            81979000
                                                                            83102000
  120 FACTOR = 2.0*(1.0-XCAP)
                                                                            84225000
      DK = 0.0
      BK = 0.0
                                                                            85348000
                                                                            86471000
      DO 140 KREV=1.N
                                                                            87594000
         K = K - 1
          DK = A(K) + DK - FACTOR*BK
                                                                            88717000
         BK = BK + DK
                                                                            89840000
  140 CONTINUE
                                                                            90963000
      P = 0.5*A(1) + DK - 0.5*FACTOR*BK
                                                                            92086000
                                                                            93209000
  160 IF (IERROR) 180, 200, 180
                                                                            94332000
  180 IFAIL = PO1AAF(IFAIL, IERROR, SRNAME)
```

200	IFAIL = O RETURN END	95455000 96578000 97701000 98824000
С	AUTO EDIT 20 SEP 76 REAL FUNCTION X02AAF(X)	07692000 15384000
C C	NAG COPYRIGHT 1975 EDITED BY JOYCE CLARKE OXFORD OEG NUCLEAR PHYSICS 03RD OCT 1976	
C C	FORTRAN MACRO VERSION FDIA26.TEC MARK 4.5 RELEASE	23076000
•		
С	• EPS •	26152000
Ċ	RETURNS THE VALUE EPS WHERE EPS IS THE SMALLEST	27690000
C	POSITIVE	29228000
C	NUMBER SUCH THAT 1.0 + EPS > 1.0	46152000
Ċ	THE X PARAMETER IS NOT USED	53844000
Č	FOR ICL 1900	61536000
Č	XO2AAF = 2.0**(-37.0)	69228000
· ·	REAL X	71792000
	XO2AAF = 2.0**(-20.0)	
С	X02AAF = "146400000000	
C	RETURN	84612000
		92304000
	END	04000000
	SUBROUTINE X04AAF(I,NERR)	08000000
С	MARK 7 RELEASE. NAG COPYRIGHT 1978	
С	EDITED BY JOYCE CLARKE OXFORD OEG NUCLEAR PHYSICS 05TH NOV 1976	
С	FORTRAN MACRO VERSION FDIA26.TEC	12000000
С	IF I = 0. SETS NERR TO CURRENT ERROR MESSAGE UNIT NUMBER	12000000
С	(STORED IN NERR1).	16000000
С	IF I = 1, CHANGES CURRENT ERROR MESSAGE UNIT NUMBER TO	20000000
Ċ	VALUE SPECIFIED BY NERR.	24000000
Ċ		28000000
Č	*** NOTE ***	32000000
č	THIS ROUTINE ASSUMES THAT THE VALUE OF NERR1 IS SAVED	36000000
C	BETWEEN CALLS. IN SOME IMPLEMENTATIONS IT MAY BE	40000000
	NECESSARY TO STORE NERR1 IN A LABELLED COMMON	44000000
C ,	BLOCK /AXO2AA/ TO ACHIEVE THIS.	48000000
•	BLUCK / RAUZRA/ TO ROTTE TO TOTAL	52000000
C	COALAD ADCIMENTS	56000000
С	SCALAR ARGUMENTS	60000000
_	INTEGER I, NERR	64000000
С	**	68000000
С	LOCAL SCALARS	72000000
	INTEGER NERR1	76000000
С	•••	7000000
	DATA NERR1 /-1/	84000000
	IF (I.EQ.O) NERR = NERR1	
	IF (I.EQ.1) NERR1 = NERR	88000000
	RETURN	92000000
	END	96000000
	INTEGER FUNCTION POIAAF(IFAIL, ERROR, SRNAME)	04000000
С	MARK 1 RELEASE. NAG COPYRIGHT 1971	08000000
Ċ	MARK 3 REVISED	12000000
Ċ	MARK 4A REVISED, IER-45	16000000
Č	MARK 4.5 REVISED	20000000
Č	MARK 7 REVISED (DEC 1978) (APR 1979)	
Ċ	PETURNS THE VALUE OF FRROR OR TERMINATES THE PROGRAM.	22666000
Č	TE A HARD FAILURE OCCURS. THIS ROUTINE CALLS A FORTRAN AUXILIARY	
C C	ROUTINE PO1AAZ WHICH GIVES A TRACE, A FAILURE MESSAGE AND HALTS	
C	MIT DOODAN	
Ü	THE CROUNALL	36000000
	INTEGER ERROR, IFAIL, NOUT	38000000
_	DOUBLE PRECISION SRNAME	38285000
С	TEST IF NO ERROR DETECTED IF (ERROR.EQ.0) GO TO 20	38570000
	IF (ERROR.EQ.O) GO TO 20	38000000 38285000 38570000 38855000
С	DETERMINE OUTPUT UNIT FOR MESSAGE	

c	CALL X04AAF (0, NOUT) TEST FOR SOFT FAILURE IF (MOD(IFAIL, 10).EQ.1) GO TO 10	39140000 39425000 39710000
С	HARD FAILURE	56000000 60000000
	WRITE (NOUT, 99999) SRNAME, ERROR	
C	STOPPING MECHANISM MAY ALSO DIFFER	64000000
C	CALL POIAAZ (X)	
	STOP	66666000
С	SOFT FAIL	76000000
С	TEST IF ERROR MESSAGES SUPPRESSED	77000000
10	IF (MOD(IFAIL/10,10).EQ.0) GO TO 20	78000000
	WRITE (NOUT, 99999) SRNAME, ERROR	79000000
20	PO1AAF = ERROR	80000000
	RETURN	84000000
99999	FORMAT (1HO, 38HERROR DETECTED BY NAG LIBRARY ROUTINE, A8,	88000000
	• 11H - IFAIL = , I5//)	92000000
	END	96000000

		SUBROUTINE PLUME(NP)	PLU	10
C	***	ST= STACK GAS TEMP (K), AT= AIR TEMP (K)	PLU	20
•	***	RAD= RADIUS OF STACK (M), VEL= STACK GAS EJECTION VEL. (M/SEC)	PLU	30
C	***	RADE RADIUS OF SIRCE (M), VELE SIRCE (RAD EDECTION VELE (II)		40
		COMMON /C20/ ST(10), AT(10), RAD(10), VEL(10), PKAPPA(10),	PLU	
	•	MAPPA(10)	PLU	50
		G = 9.8	PLU	60
		PTG = 0.01	PLU	70
			PLU	80
		DO 30 I=1,NP	•	-
		S = PTG*G/AT(I)	PLU	90
		$FB = G^*VEL(I)^*RAD(I)^*RAD(I)^*(ST(I)-AT(I))/AT(I)$	PLU	100
		IF (FB.GT.55.) GO TO 10	PLU	110
		X = 14.*FB**0.625	PLU	120
			PLU	130
		GO TO 20		-
	10	X = 34.*FB**0.4	PLU	140
	20	PKAPPA(I) = 1.6 *FB ** 0.333333 ** (3.5 *X) ** 0.666667	PLU	150
		QKAPPA(I) = 2.9*(FB/S)**0.333333	PLU	160
	20		PLU	170
	30		PLU	180
		RETURN	•	
		END	PLU	190

	SUBROUTINE SIGA(DIR, DIS, NTYPE, SIGY, JWD, DIS2)	SIGA	10
	REAL C3(7)	SIGA	20
	DATA C3 /0.22,0.16,0.11,0.08,0.06,0.04,0.04/	SIGA	_
	DIS2 = 1.0E-10	SIGA	40
	WD = JWD	SIGA	_
	A = DIR - WD	SIGA	60
	A = ABS(A)	SIGA	70
	ACID = 360.0 - A	SIGA	80
	IF (A.GE.270.0) A = ACID	SIGA	90
	IF (A.GE.90.0) GO TO 10	SIGA	100
	$A = A^{+}0.01745$	SIGA	110
	Y = DIS*SIN(A)	SIGA	120
	DIS2 = DIS*COS(A)	SIGA	130
	IF (DIS2.LT.1.0) GO TO 10	SIGA	140
	SIGY = DIS2*C3(NTYPE)/SQRT(1.0+0.0001*DIS2)	SIGA	
	B = Y/SIGY	SIGA	160
	IF (B.GT.25.0) GO TO 10	SIGA	170
	B = B*B/2.0	SIGA	180
	IF (B.GT.50.0) GO TO 10	SIGA	
	B = EXP(-B)	SIGA	-
	SIGY = B/SIGY	SIGA	
	GO TO 20	SIGA	
10	SIGY = 0.0	SIGA	
	CONTINUE	SIGA	_
20			
	RETURN	SIGA	
	END	SIGA	200

	FUNCTION SIGMA(JSTAB, DIS, IKPM, P)	SIG	10
			10
	REAL KCOVER	SIG	20
	COMMON /C1/ XM(50), SIGTAB(6,50), SIGMAX(6), V(20), DV(20),	SIG	30
	CLAMDA(20), DLAMDA(40,12,20), NDIST, NSTAB	SIG	40
		SIG	50
	DIMENSION AONE(6), BONE(6), ATWO(6), BTWO(6), D3(7), D4(7)	SIG	60
	DATA AONE /0.112,0.130,0.112,0.098,0.0609,0.0638/	SIG	70
		SIG	80
	DATA ATWO /5.38E-4,6.52E-4,9.05E-4,1.35E-3,1.96E-3,	SIG	90
		SIG	100
	PATA PRIO 40 04E 0 7E0 0 710 0 600 0 600 0 6724	SIG	
	DATA BTWO /0.815,0.750,0.718,0.688,0.684,0.672/	210	110
	DATA D3 /0.20,0.12,0.08,0.06,0.03,0.016,0.016/	SIG	120
	DATA D4 /0.0,0.0,0.0002,0.0015,0.0003,0.0003,0.0003/	SIG	130
	P = 0.0	SIG	140
	NTYPE = JSTAB	SIG	150
•	IF (NTYPE.GT.6) NTYPE = 6	SIG	160
,	DO 10 I=1,50 IKP = I IF (XM(I).GT.DIS) GO TO 20 10 CONTINUE 20 IF (IVP.IT.2) IVP 2	SIG	170
	IKP = I	SIG	180
	TF (XM(T).GT.DIS) GO TO 20	SIG	190
	10 CONTINUE	SIG	200
	20 IF (IKP.LT.2) IKP = 2	SIG	210
		SIG	
	IKPM = IKP - 1 IF (KDISP.GT.1) GO TO 40		
_	IF (RDISP.GI.1) GO TO 40	SIG	230
Ç		SIG	240
	DO 30 I=1,IKPM	SIG SIG	250
	IKP = I + 1	SIG	260
	IF (SIGTAB(NTYPE,I).GT.SIGMAX(NTYPE)) GO TO 70	SIG	270
	30 CONTINUE	SIG	280
		SIG	290
;	• ALOG(XM(IKP)/XM(IKPM))	SIG	300
	A = SIGTAB(NTYPE, IKP)/XM(IKP)**P	SIG	310
	SIGMA = A*DIS**P	SIG	320
	GO TO 60	SIG	330
С	HOSKER'S FORMULATION OF BRIGGS-SMITH DISPERSION VALUES	SIG	340
•	40 IF (KDISP.EQ.3) GO TO 50	SIG	350
	G = AONE(NTYPE)*DIS**BONE(NTYPE)/(1.0+ATWO(NTYPE)*DIS**	SIG	360
	G = AUNE(NITPE)*DIS**BUNE(NITPE)/(1.U+AIWU(NITPE)*DIS** * RTWO(NTYPF))	SIG	_
			370
	CALL FFAC(ROUGH, DIS, F)	SIG	380
	SIGMA = G*F	SIG	390
	GO TO 60	SIG	400
С	BRIGGS DISPERSION VALUES	SIG	410
	50 SIGMA = D3(NTYPE)*DIS/SQRT(1.0+D4(NTYPE)*DIS)	SIG	420
	60 IF (SIGMA.LT.SIGMAX(NTYPE)) GO TO 80	SIG	430
	70 SIGMA = SIGMAX(NTYPE)	SIG	440
	80 IF (SIGMA.LT.1.0) SIGMA = 1.0	SIG	450
	RETURN	SIG	460
	END	SIG	470
		010	710

```
SIM
     SUBROUTINE SIMPUN(XX, FX, NX, I, AX)
                                                                     SIM
                                                                           20
C PROGRAM AUTHOR J. BARISH,
C COMPUTING TECHNOLOGY CENTER, UNION CARBIDE CORP., NUCLEAR DIV.,
                                                                     SIM
                                                                           30
                                                                     SIM
                                                                            40
C OAK RIDGE, TENN.
                                                                            50
                                                                      SIM
С
                                                                      SIM
                                                                            60
     DIMENSION XX(2), FX(2), AX(2)
                                                                      SIM
                                                                           70
     IF (I.LT.0) GO TO 30
                                                                      SIM
                                                                           80
     AX(1) = 0.0
                                                                      SIM
                                                                           90
      DO 10 IX=2,NX,2
                                                                      SIM
                                                                           100
       D1 = XX(IX) - XX(IX-1)
        AX(IX) = AX(IX-1) + D1/2.0*(FX(IX)+FX(IX-1))
                                                                      SIM
                                                                           110
                                                                      SIM
                                                                          120
        IF (NX.EQ.IX) GO TO 20
                                                                      SIM
                                                                          130
        D2 = XX(IX+1) - XX(IX-1)
                                                                      SIM
        D3 = D2/D1
                                                                      SIM
                                                                          150
        A2 = D3/6.0 + D2 + 2/(XX(IX+1) - XX(IX))
                                                                      SIM
                                                                          160
       A3 = D2/2.0 - A2/D3
       AX(IX+1) = AX(IX-1) + (D2-A2-A3)*FX(IX-1) + A2*FX(IX) +
                                                                      SIM
                                                                          170
                                                                      SIM
                                                                          180
            A3*FX(IX+1)
                                                                      SIM 190
   10 CONTINUE
                                                                      SIM 200
   20 RETURN
                                                                      SIM 210
   30 \text{ AX(NX)} = 0.0
                                                                      SIM 220
      DO 40 IX=2.NX.2
                                                                      SIM 230
        IC = NX + 1 - IX
                                                                      SIM 240
        D1 = XX(IC+1) - XX(IC)
        AX(IC) = AX(IC+1) + D1/2.0*(FX(IC+1)+FX(IC))
                                                                      SIM 250
                                                                      SIM 260
        IF (NX.EQ.IX) GO TO 20
        D2 = XX(IC+1) - XX(IC+1)
                                                                      SIM 270
                                                                      SIM
                                                                           280
        D3 = D2/(XX(IC)-XX(IC-1))
                                                                      SIM
                                                                           290
        A2 = D3/6.0 + D2 + 2/D1
                                                                      SIM
                                                                           300
        A3 = D2/2.0 - A2/D3
        AX(IC-1) = AX(IC+1) + (D2-A2-A3)*FX(IC-1) + A2*FX(IC) +
                                                                      SIM 310
                                                                      SIM 320
        A3*FX(IC+1)
                                                                      SIM 330
   40 CONTINUE
                                                                     SIM 340
      RETURN
                                                                      SIM 350
      END
```

```
WAS
     SUBROUTINE WASH(IPTYPE, DF1, DF2, GRATE)
                                                                            10
     LOGICAL SKIPP, SKIPA, SKIPL, SKIPG, SKIPOL
                                                                      WAS
                                                                            20
                                                                      WAS
                                                                             30
     DIMENSION IPTYPE(20), DF1(20), DF2(20)
     DIMENSION GRATE(40,12), A(7), B(7), A2RHO(7)
                                                                      WAS
                                                                             40
     COMMON /C1/ XM(50), SIGTAB(6,50), SIGMAX(6), V(20), DV(20),
                                                                      WAS
          CLAMDA(20), DLAMDA(40,12,20), NDIST, NSTAB
                                                                      WAS
                                                                             60
     COMMON /C8/ NG, NP, NA, NL, NWS, NPOL, NFSTAB, NWINDS, WW, WF, ...
                                                                      WAS
                                                                            70
                                                                      WAS
                                                                            80
          FDRY(12)
     COMMON /C15/ SKIPP(10), SKIPA(10), SKIPL(10), SKIPG(40),
                                                                      WAS
                                                                            90
                                                                      WAS
                                                                            100
          SKIPOL(20)
                                                                      WAS
                                                                            110
     COMMON /C16/ KSEA
     DATA A /0.0,0.09549,0.034507,0.0239916,8.11996E-03,9.59721E-03,
                                                                      WAS
                                                                            120
                                                                       WAS
                                                                            130
          0.0104141/
     DATA B /0.333333.0.8405,0.493444,0.305593,0.321280,0.281789,
                                                                      WAS
                                                                            140
                                                                            150
                                                                       WAS
          0.249265/
     DATA A2RHO /4.0,7.8,16.0,41.0,81.0,169.0,400.0/, AA /5.546E-4/,
                                                                      WAS
                                                                            160
                                                                      WAS
                                                                            170
         PP /0.604229/
                                                                       WAS
                                                                            180
     DO 160 M=1,NPOL
                                                                     WAS
                                                                            190
        IF (SKIPOL(M)) GO TO 160
                                                           WAS
                                                                           200
        IF (IPTYPE(M).EQ.2) GO TO 130
                                                                       WAS 210
        ITAG = 0
C THE THREE INITIALIZATIONS TO FOLLOW ARE
                                                                       WAS 220
C NECESSARY DUE TO FORTRAN OPTIMIZATION TECHNIQUES
                                                                       WAS 230
                                                                       WAS
                                                                           240
                                                                       WAS
                                                                            250
        IKPP = 2
                                                                       WAS
                                                                            260
        FAC = 0.0
                                                                       WAS
                                                                            270
        ASR = DF1(M)**2*DF2(M)/4.
                                                                       WAS
                                                                            280
        IF (A2RHO(1).GE.ASR) GO TO 10
                                                                       WAS
                                                                            290
        GO TO 20
                                                                       WAS
                                                                            300
        ITAG = 1
   10
                                                                       WAS
                                                                            310
        FAC = ASR/A2RHO(1)
                                                                       WAS
                                                                           320
         GO TO 30
                                                                       WAS 330
        IF (ASR.LE.A2RHO(7)) GO TO 30
   20
                                                                       WAS
                                                                            340
         ITAG = 2
                                                                       WAS
                                                                            350
        CONTINUE
   30
                                                                       WAS
         IF (ITAG.NE.O) GO TO 60
                                                                            360
                                                                       WAS
                                                                            370
         DO 40 ITEST=1,6
                                                                       WAS
                                                                            380
            IKP = ITEST
                                                                       WAS
                                                                            390
            IKPP = IKP + 1
            IF (ASR.GT.A2RHO(ITEST) .AND. ASR.LE.A2RHO(IKPP)) GO TO 50 WAS
                                                                            400
                                                                       WAS
                                                                            410
   40
         CONTINUE
                                                                       WAS
                                                                            420
         CONTINUE
   50
         FAC = (ASR-A2RHO(IKP))/(A2RHO(IKPP)-A2RHO(IKP))
                                                                       WAS
                                                                            430
                                                                       WAS
                                                                            440
   60
         CONTINUE
                                                                       WAS
                                                                            450
         DO 120 I=1,NG
                                                                       WAS
                                                                            460
            IF (SKIPG(I)) GO TO 120
                                                                       WAS
            DO 110 MON=1.KSEA
                                                                       WAS
                                                                            480
               X = GRATE(I,MON)*0.254
                                                                       WAS
                                                                            490
               IF (ITAG.NE.1) GO TO 70
                                                                       WAS
                                                                            500
               Y = FAC^*(B(1)^*X)
                                                                       WAS
                                                                            510
               DLAMDA(I,MON,M) = 1.0E-04*Y
                                                                       WAS
                                                                            520
               GO TO 110
                                                                       WAS
                                                                            530
               IF (ITAG.NE.2) GO TO 80
   70
               WAS
                                                                            540
                                                                       WAS
                                                                            550
               DLAMDA(I,MON,M) = 1.0E-04*Y
                                                                       WAS
             . GO TO 110
                                                                            560
                                                                       WAS
                                                                            570
   80
               CONTINUE
                                                                       WAS
                                                                            580
               IF (IKP.EQ.1) GO TO 90
               Y1 = (-B(IKP) + SQRT(B(IKP) + 2 + 4 + A(IKP) + X))/(2 + A(IKP))
                                                                       WAS
                                                                            590
                                                                       WAS
                                                                            600
               GO TO 100
```

90	Y1 = B(1) *X	WAS	610
100	$Y2 = (-B(IKPP)+SQRT(B(IKPP)^{**}2+4.*A(IKPP)^{*}X))/(2.*$	WAS	620
4	A(IKPP))	WAS	630
	Y = Y1*(1FAC) + Y2*FAC	WAS	640
	DLAMDA(I,MON,M) = 1.0E-04*Y	WAS	650
110	CONTINUE	WAS	660
120	CONTINUE	WAS	670
	GO TO 160	WAS	680
130	CONTINUE	WAS	690
	DF2M = DF2(M)*10000.0	WAS	700
	DO 150 I=1,NG	WAS	710
	IF (SKIPG(I)) GO TO 150	WAS	720
	DO 140 MON=1, KSEA	WAS	730
	X = GRATE(I,MON)*0.254	WAS	740
	Y = AA*X**PP	WAS	750
	DLAMDA(I,MON,M) = Y*DF2M	WAS	760
140	CONTINUE	WAS	770
150	CONTINUE	WAS	780
160	CONTINUE	WAS	790
	RETURN	WAS	800
	END	WAS	810

```
SUBROUTINE WNDSCE(WINDS)
                                                                           WND
                                                                                 10
                                                                           WND
                                                                                 20
      REAL MU
                                                                           WND
      DIMENSION WINDS(8), C(3)
                                                                                 30
      COMMON /C8/ NG, NP, NA, NL, NWS, NPOL, NFSTAB, NWINDS, WW, WF.
                                                                           WND
                                                                                 40
                                                                           WND
                                                                                 50
           FDRY(12)
      COMMON /C12/ WQIO(3,5,8), VFALL(3)
                                                                           WND
                                                                                 60
      COMMON /C19/ CONCF(3,5), SSCON(3), DEN(3), DSALT(3), DSUSP(3),
                                                                           WND
                                                                                 70
                                                                           WND
                                                                                 80
           ITYPE(3)
      DATA MU /182.7E-4/,G/9.8/,A/0.1/,RHO/1.213E+3/,Z/1.0/,RK/1.E-2/,C WND
                                                                                 90
                                                                           WND
                                                                                100
           /1.5,1.8,2.8/
       DSALT=AVERAGE DIAMETER(IN METERS) FOR SALTATING PARTICLES
C ***
                                                                           MND
                                                                                110
C ***
       DSUSP=AVERAGE DIAMETER(IN METERS) FOR SUSPENDED PARTICLES
                                                                           WND
                                                                                120
C ***
       WQIO(I,J,K)=EMISSION RATE IN GM/METER**2/SEC OF POLLUTANT J FROM WND
                                                                                130
       WINDBLOWN SOURCE I DURING TIME OF WINDSPEED CLASS K
                                                                           WND
                                                                                140
C ***
       CONCF(I, J) = CONCENTRATION FACTOR FOR POLLUTANT J FROM WIND-
C ***
                                                                           WND
                                                                                150
C ***
                                                                           WND
                                                                                160
       BLOWN SOURCE I
       FDRY=FRACTION OF TIME WINDBLOWN SOURCE IS DRY
C ***
                                                                           WND
                                                                                170
C ***
       A=SAND PARTICLE THRESHOLD VELOCITY PROPORTIONALITY CONSTANT(0.1) WND
                                                                                180
C ***
       RHO=DENSITY OF AIR= 1.213E+3 GM/ M**3 AT 18C
                                                                           WND
                                                                                190
 ***
       Z=HEIGHT FOR WIND SPEED MEASUREMENT (USUALLY TAKEN AS 1 M)
                                                                           WND
                                                                                200
C
      RK=SURFACE ROUGHNESS(USUALLY TAKEN AS .O1M)
                                                                           WND
                                                                                210
                                                                           WND
                                                                                220
       G=GRAVITATIONAL ACCELERATION IN M/SEC**2
C ***
       ITYPE=1---NEARLY UNIFORM SAND, C=1.5
                                                                           WND
                                                                                230
       ITYPE=2---NATURALLY GRADED SAND, C=1.8
                                                                           WND
                                                                                240
C ***
C ***
                                                                           MND
                                                                                250
       ITYPE=3---WIDE RANGE OF GRAIN SIZE, C=2.8
C ***
                                                                           WND
                                                                                260
       DEN=DENSITY OF WINDBLOWN MATERIAL
                                                                           WND
C ***
      MU=DYNAMIC VISCOSITY OF AIR(G/M/SEC)=182.7E-4 AT 18C
                                                                                270
                                                                           WND
                                                                                280
      IN = 5
                                                                           WND
                                                                                290
      KOUT = 6
                                                                           WND
                                                                                300
      GMU = G/(18.0*MU)
C ***
                                                                           WND
                                                                                310
       CALCULATE SETTLING VELOCITIES FOR SUSPENDED PARTICLES
                                                                           WND
                                                                                320
      DO 10 I=1.NWS
                                                                           WND
        VFALL(I) = DSUSP(I) **2*GMU*DEN(I) *1.0E6
                                                                                330
                                                                           WND
                                                                                340
        WRITE (KOUT,99999) I, VFALL(I)
                                                                           WND
                                                                                350
   10 CONTINUE
                                                                           WND
                                                                                360
      ALPHA = 1./(5.75*ALOG10(Z/RK))**3
                                                                           WND
                                                                                370
      DSTAND = 0.00025
                                                                           WND
                                                                                380
      BETA = ALPHA*RHO/G
                                                                           WND
                                                                                390
      DO 60 I=1.NWS
                                                                           WND
                                                                                400
        WRITE (KOUT, 99998) I
        VT =5.75*A*SQRT(((DEN(I)*1.E6-RHO)/RHO)*G*DSALT(I))*ALOG10(Z/RK)WND
                                                                                410
                                                                           WND
                                                                                420
        IITY = ITYPE(I)
                                                                           WND
                                                                                430
        CS = C(IITY)
                                                                           WND
                                                                                440
        BETACS = BETA*CS*SQRT(DSALT(I)/DSTAND)
                                                                           WND
                                                                                450
        DO 50 JJ=1.NWINDS
                                                                           WND
                                                                                460
          VR = WINDS(JJ)
          IF (VR.LT.VT) GO TO 20
                                                                                470
                                                                           WND
          QST = BETACS*(VR-VT)**3
                                                                           WND
                                                                                480
                                                                           WND
                                                                                490
          GO TO 30
                                                                           WND
                                                                                500
          QST = 0.
   20
                                                                           WND
                                                                                510
          CONTINUE
   30
                                                                           WND
                                                                                520
          DO 40 J=1.NPOL
            WQIO(I,J,JJ) = SSCON(I)*CONCF(I,J)*QST
                                                                           WND
                                                                                530
                                                                           WND
                                                                                540
            WRITE (KOUT, 99997) J, JJ, WQIO(I, J, JJ)
                                                                           WND
                                                                                550
   40
          CONTINUE
                                                                           WND
                                                                                560
   50
        CONTINUE
                                                                           WND
                                                                                570
   60 CONTINUE
                                                                           WND
                                                                                580
      RETURN
99999 FORMAT (/10X, 40HDEPOSITION VELOCITY FOR WINDBLOWN SOURCE, I4,
                                                                           WND
                                                                                590
                                                                           WND
                                                                                600
           2X, 1H=, E12.4, 2X, 10HMETERS/SEC)
99998 FORMAT (///10X, 35HEMISSION DATA FROM WINDBLOWN SOURCE, I4/)
                                                                           WND
                                                                                610
99997 FORMAT (10X, 9HPOLLUTANT, I4, 2X, 4HWIND, I4, 2X, 6HSOURCE,
                                                                           WND
                                                                                620
           10H STRENGTH=, E12.4, 2X, 11HGM/M**2/SEC)
                                                                           WND
                                                                                630
```

END

WND

640

$\label{eq:appendix} \textbf{APPENDIX} \ \textbf{C}$ GLOSSARY OF TERMS USED IN THE ATM-TOX COMPUTER PROGRAM

APPENDIX C

GLOSSARY OF TERMS USED IN THE ATM-TOX COMPUTER PROGRAM

Α	Sand particle threshold velocity property constant (0.1)
F(32,40,10)	Fraction of sector occupied by transformed area segment
G	Gravity (9.8m/s ²)
Н	Height corrected for plume rise (m)
R	Earth's radius (m)
V(20)	Terminal velocity (m/s)
Z	Height for wind-speed measurement (m)
_	B speedand ()
AT(10)	Air temperature (K)
DA(40,10)	Distance from gage to area-source centroid (m)
DL	Distance from gage to middle of line source (m)
DP(40,10)	Distance from gage to point source (m)
DV(5)	Deposition velocity (m/s)
MU	Viscosity of air at 18°C
NA(10)	# of area sources
NG(40)	# of rain gages
NL(10)	# of line sources
NP(10)	# of point sources
RK	Surface roughness (m)
R1(40,10)	Radial values for transformation of area sources
R2(40,10)	Radial values for transformation of area sources
ST(10)	Stack gas temperature (K)
WF	Fraction of time during which only fallout occurs
WW	
	Fraction of time during which both washout and fallout occur
XM(50)	Distances for stability data (m)
DEN(3)	Density of windblown material (g/m ³)
DF1(20)	Diameter of particle (microns)
DF2(20)	Density of particle (g/cm ³)
DTH(40,10)	Angle for transformation of area sources
HGA(10)	Height of area sources (m)
HGL(10)	Height of line sources (m)
HGT(10)	Height of point sources (m)
	Climatological mean value of afternoon mixing height (m)
HTA(12)	
HTG(40)	Height of gage above base level (m)
HTN(12)	Climatological mean value of nocturnal mixing height (m)
NBG	Switch for background concentrations
NWS	# of wind blown area sources (maximum of 3)
PI8	Pi/8.0
QQP	Subroutine
RAD(10)	Radius of stack (m) for point source
RHO	Density of air (g/m ³)
TH1(40,10)	Angles for transformation of area sources
TH2(40,10)	Angles for transformation of area sources
VEL(10)	Stack gas ejection velocity (m/s)
APHI(10)	Longitude of area-source centroids (radians)
AQI0(10,20,12)	Emission rate of area sources (g/m ² -s)
AQI0(10,20,12) AREA(10)	Area of area sources (m ²)
AREA(IV)	Area or area sources (III)

ATHA(10)	Latitude of area-source centroids (radians)
COMP(32)	Used in transformation of area sources
COPA	Air concentration from area sources (g/m ³)
COPL	Air concentration from line sources (g/m ³)
COPP	Air concentration from point sources (g/m ³)
COPT	Air concentration from all sources (g/m ³)

DCAL Subroutine

DEPA(40,20,12) Area-source deposition rate (g/m^2-s) DEPL(40,20,12) Line-source deposition rate (g/m^2-s) DEPP(40,20,12) Point-source deposition rate (g/m^2-s) DEPT(40,20,12) Total source deposition rate (g/m^2-s)

DIRA(40,10) Direction from gage to area-source centroid (degrees)

DIRP(40,10) Direction from gage to point source (degrees)

FALL Subroutine

FDRY(12) Fraction of time windblown source is dry

FFAC Subroutine

FREQ(12,7,8,16) Wind frequency table
GPHI(40) Longitude of gages (radians)
GTHA(40) Latitude of gages (radians)

HMIX(8,12) Mixing height as a function of stability class (m)

IPAR # of parent pollutant

ICHO Switch for MAXCON (if ICHO = 2)

KSEA No. of seasons (or months) of wind data

KTAG Switch for print statement on wind frequency

LQI0(10,20,12) Emission rate of line sources (g/m/-s)

NDIR # of directions in wind frequency table (usually 16)

NPOL # of pollutants (maximum of 5)
PPHI(10) Longitude of point sources (radians)
PQI0(10,20,12) Emission rate of point sources (g/s)
PTHA(10) Latitude of point sources (radians)

SIGA Subroutine

SURF(40) KCOVER for each gage

WASH Subroutine

WQI0(3,5,8) Windblown source strength (g/m^2-s)

ALATD(10)

ALATM(10)

ALATM(10)

ALATS(10)

ALOND(10)

ALONM(10)

ALONS(10)

Latitude of area source (minutes)

Longitude of area source (seconds)

Longitude of area source (minutes)

Longitude of area source (minutes)

Longitude of area source (seconds)

ANAME(10) Names of area sources

CONCF(3,5) Concentration factor for windblown source

DSALT(3) Saltation diameter (m)
DSUSP(3) Suspension diameter (m)

FRACT(12) Fraction of the month in which precipitation occurs

GLATD(40)
GLATD(40)
GLATM(40)
GLATS(40)
GLOND(40)
GLONM(40)
GLONS(40)
Latitude of gage (minutes)
Longitude of gage (degrees)
Longitude of gage (minutes)
Longitude of gage (minutes)
Longitude of gage (seconds)

GNAME(40) Names of gages

GRATE(40.12) Average rate of precipitation for each gage (hundredths of an inch/hr)

ITYPE(3) Type of windblown source J JSTAB(7) Index of stabilities to be used

KDISP Stability switch (1 for Pasquill-Gifford,

2 for Briggs-Smith, 3 for Briggs)

LFPHI(10) Longitude of line-source end (radians)

LFTHA(10) Latitude of line-source end (radians)

LNAME(10) Names of line sources

LSPHI(10) Longitude of line-source start (radians)
LSTHA(10) Latitude of line-source start (radians)

NDIST # of distances in stability table
NSTAB # of stabilities in frequency table

PI180 Pi/180.0

PLATD(10)

PLATM(10)

PLATS(10)

PLOND(10)

PLONM(10)

PLONS(10)

Latitude of point source (minutes)

Longitude of point source (seconds)

Longitude of point source (minutes)

Longitude of point source (minutes)

Longitude of point source (minutes)

Longitude of point source (seconds)

PLUME Subroutine

PNAME(10) Names of point sources

ROUGH Roughness of land surface (m)

SIGMA Subroutine

SKIPA(10)
Switch for area sources (T=not used, F=used)
SKIPG(40)
Switch for gages (T=not used, F=used)
SKIPL(10)
Switch for line sources (T=not used, F=used)
SKIPP(10)
Switch for point sources (T=not used, F=used)
SSCON(3)
Suspension to saltation ratio for windblown source

THALF(20) Half-life for pollutant (seconds)

VFALL(3) Deposition velocity for windblown source (m/s)

WINDS(8) Wind speeds at ground level (10m)

ATITLE(10) Title for study

AVRATE(12) Average rate of precipitation (hundredths of an inch/hr)

CLAMDA(5) Washout rate of pollutant (s⁻¹)

DLAMDA(40,12,20) Washout rate for each pollutant for each gage (s⁻¹)

DRYDEP(40,20,12) Dry deposition (g/m²-s)
E02AEF Subroutine from NAG library
E02CBF Subroutine from NAG library

FRXTRN Subroutine GEOMET Subroutine

GFRACT(40,12) Fract. of month for which precipitation occurs for each gage

Type of pollutant (1 for particulate, 2 for gas) IPTYPE(20) Type of cover (<5 for grass, >5 for forest) **KCOVER KDUMMY** Dummy read for title of wind data set Latitude of line-source end (degrees) LLATDF(10) Latitude of line-source start (degrees) LLATDS(10) Latitude of line-source end (minutes) LLATMF(10) Latitude of line-source start (minutes) LLATMS(10) Latitude of line-source end (seconds) LLATSF(10) Latitude of line-source start (seconds) LLATSS(10) Longitude of line-source end (degrees) LLONDF(10)

LLONDS(10)	Longitude of line-source start (degrees)
LLONMF(10)	Longitude of line-source end (minutes)
LLONMS(10)	Longitude of line-source start (minutes)
LLONSF(10)	Longitude of line-source end (seconds)
LLONSS(10)	Longitude of line-source start (seconds)

MAXCON Subroutine

NFSTAB # of stabilities in frequency table
NWINDS # of winds in frequency table
P01AAF Function from NAG library

PKAPPA Plume-rise parameter for stabilities 1-4

POLNAM(20) Name of pollutant

PURBAN(7) Exponents for wind profile (urban sigmas)
PRURAL(7) Exponents for wind profile (rural sigmas)
QKAPPA Plume-rise parameter for stabilities 5-6

SEANAM(12) Names of seasons (or months)

SIGMAX(7) Maximum value of vertical dispersion for each stability (m)

SIGTAB(6,50) Pasquill stabilities

SIMPUN Subroutine

SKIPOL(20) Switch for pollutant (T=not used, F=used)

STNFRD Name of recording station WETDEP(40,20,12) Wet deposition (g/m²-s)

WINDSD(8,7,10) Wind speed at height of point source for each stability class (m/s)

WNDSCE Subroutine

X02AAF Function from NAG library X04AAF Subroutine from NAG library

APPENDIX D INPUT DATA SET

```
TEST RUN WITH POINT. AREA AND LINE SOURCES
            1 0.15
  2
 600.
 400.
                           3 4
                      2
                                          6
  6 16
            6
                      4.37
                                6.94
  0.90
            2.57
                                                 12.35
ANNUAL
    KNOXVILLE, TN, WINDROSE, ANNUAL, 6 STABILITIES
 N A 0.0000 0.0000 0.0000 0.0000 0.0000
NNE A 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000
NE A 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000
ENE A 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000
 E A 0.0000 0.0000 0.0000 0.0000 0.0000
ESE A 0.0000 0.0000 0.0000 0.0000 0.0000
SE A 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000
SSE A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
 S A 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000
SSW A 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
SW A 0.0000 0.0000 0.0000 0.0000 0.0000
WSW A 0.0000 0.0000 0.0000 0.0000 0.0000
 W A 0.0000 0.0000 0.0000 0.0000 0.0000
WNW A 0.0008 0.0002 0.0000 0.0000 0.0000 0.0000
NW A 0.0000 0.0000 0.0000 0.0000 0.0000
NNW A 0.0000 0.0000 0.0000 0.0000 0.0000
 N B 0.0019 0.0062 0.0016 0.0000 0.0000 0.0000
NNE B 0.0023 0.0053 0.0007 0.0000 0.0000 0.0000
NE B 0.0020 0.0069 0.0014 0.0000 0.0000 0.0000
ENE B 0.0020 0.0034 0.0007 0.0000 0.0000 0.0000
  E B 0.0011 0.0014 0.0009 0.0000 0.0000 0.0000
ESE B 0.0011 0.0021 0.0005 0.0000 0.0000 0.0000
SE B 0.0010 0.0005 0.0000 0.0000 0.0000 0.0000
SSE B 0.0008 0.0007 0.0000 0.0000 0.0000 0.0000
  S B 0.0011 0.0018 0.0000 0.0000 0.0000 0.0000
SSW B 0.0004 0.0016 0.0002 0.0000 0.0000 0.0000
SW B 0.0009 0.0025 0.0007 0.0000 0.0000 0.0000
WSW B 0.0009 0.0021 0.0007 0.0000 0.0000 0.0000
 W B 0.0010 0.0030 0.0009 0.0000 0.0000 0.0000
WNW B 0.0011 0.0023 0.0007 0.0000 0.0000 0.0000
NW B 0.0004 0.0025 0.0002 0.0000 0.0000 0.0000
NNW B 0.0009 0.0023 0.0005 0.0000 0.0000 0.0000
  N C 0.0005 0.0069 0.0034 0.0000 0.0000 0.0000
NNE C 0.0007 0.0057 0.0046 0.0000 0.0000 0.0000
NE C 0.0007 0.0066 0.0062 0.0000 0.0000 0.0000
ENE C 0.0002 0.0050 0.0023 0.0000 0.0000 0.0000
 E C 0.0009 0.0041 0.0021 0.0000 0.0000 0.0000
ESE C 0.0005 0.0016 0.0011 0.0000 0.0000 0.0000
 SE C 0.0007 0.0009 0.0002 0.0000 0.0000 0.0000
SSE C 0.0000 0.0009 0.0000 0.0000 0.0000 0.0000
  S C 0.0006 0.0018 0.0009 0.0000 0.0000 0.0000
SSW C 0.0001 0.0014 0.0014 0.0002 0.0000 0.0000
 SW C 0.0001 0.0018 0.0030 0.0002 0.0000 0.0000
WSW C 0.0002 0.0046 0.0053 0.0000 0.0000 0.0000
  W C 0.0003 0.0071 0.0046 0.0002 0.0000 0.0000
WNW C 0.0003 0.0025 0.0021 0.0000 0.0000 0.0000
 NW C 0.0003 0.0021 0.0016 0.0000 0.0000 0.0000
NNW C 0.0004 0.0034 0.0009 0.0000 0.0000 0.0000
  N D 0.0044 0.0201 0.0188 0.0064 0.0000 0.0000
NNE D 0.0046 0.0183 0.0137 0.0023 0.0000 0.0000
 NE D 0.0041 0.0176 0.0199 0.0034 0.0000 0.0000
ENE D 0.0028 0.0098 0.0105 0.0027 0.0000 0.0000
  E D 0.0034 0.0062 0.0039 0.0009 0.0000 0.0000
ESE D 0.0019 0.0032 0.0027 0.0002 0.0000 0.0000
```

```
SE D 0.0016 0.0023 0.0011 0.0009 0.0000 0.0000
SSE D 0.0008 0.0016 0.0009 0.0005 0.0000 0.0000
  S D 0.0025 0.0048 0.0030 0.0025 0.0000 0.0000
SSW D 0.0014 0.0039 0.0039 0.0025 0.0007 0.0000
 SW D 0.0017 0.0082 0.0108 0.0069 0.0016 0.0000
WSW D 0.0024 0.0121 0.0153 0.0117 0.0011 0.0000
  W D 0.0033 0.0153 0.0167 0.0110 0.0009 0.0000
WNW D 0.0021 0.0092 0.0085 0.0048 0.0002 0.0000
 NW D 0.0013 0.0057 0.0055 0.0016 0.0002 0.0000
NNW D 0.0028 0.0103 0.0032 0.0005 0.0000 0.0000
 N E 0.0000 0.0105 0.0062 0.0000 0.0000 0.0000
NNE E 0.0000 0.0098 0.0060 0.0000 0.0000 0.0000
NE E 0.0000 0.0195 0.0055 0.0000 0.0000 0.0000
ENE E 0.0000 0.0140 0.0032 0.0000 0.0000 0.0000
 E E 0.0000 0.0073 0.0002 0.0000 0.0000 0.0000
ESE E 0.0000 0.0053 0.0005 0.0000 0.0000 0.0000
SE E 0.0000 0.0030 0.0000 0.0000 0.0000 0.0000
SSE E 0.0000 0.0021 0.0000 0.0000 0.0000 0.0000
  S E 0.0000 0.0050 0.0009 0.0000 0.0000 0.0000
SSW E 0.0000 0.0053 0.0007 0.0000 0.0000 0.0000
 SW E 0.0000 0.0062 0.0025 0.0000 0.0000 0.0000
WSW E 0.0000 0.0119 0.0016 0.0000 0.0000 0.0000
  W E 0.0000 0.0071 0.0021 0.0000 0.0000 0.0000
WNW E 0.0000 0.0037 0.0007 0.0000 0.0000 0.0000
NW E 0.0000 0.0025 0.0000 0.0000 0.0000 0.0000
NNW E 0.0000 0.0041 0.0000 0.0000 0.0000 0.0000
  N F 0.0074 0.0114 0.0000 0.0000 0.0000 0.0000
NNE_F 0.0100 0.0158 0.0000 0.0000 0.0000 0.0000
NE F 0.0181 0.0238 0.0000 0.0000 0.0000 0.0000
ENE F 0.0179 0.0163 0.0000 0.0000 0.0000 0.0000
  E F 0.0140 0.0085 0.0000 0.0000 0.0000 0.0000
ESE F 0.0124 0.0055 0.0000 0.0000 0.0000 0.0000
SE F 0.0082 0.0048 0.0000 0.0000 0.0000 0.0000
SSE F 0.0034 0.0030 0.0000 0.0000 0.0000 0.0000
  S F 0.0086 0.0055 0.0000 0.0000 0.0000 0.0000
SSW F 0.0052 0.0060 0.0000 0.0000 0.0000 0.0000
SW F 0.0066 0.0060 0.0000 0.0000 0.0000 0.0000
WSW F 0.0106 0.0101 0.0000 0.0000 0.0000 0.0000
 W F 0.0090 0.0073 0.0000 0.0000 0.0000 0.0000
WNW F 0.0052 0.0021 0.0000 0.0000 0.0000 0.0000
NW F 0.0027 0.0025 0.0000 0.0000 0.0000 0.0000
NNW F 0.0070 0.0034 0.0000 0.0000 0.0000 0.0000
  П
      1 2 1
                      1
  F
        F
             F
                 F
  F
   F
   F
 36.00000
            0.00000
                     0.00000 83.00000
                                         59.00000
                                                   19.95644
                                                                       GAGE
           0.00000 32.39592
                               84.00000
                                         0.00000
                                                   0.00000
 36.00000
                                                                       GAGE
                                                                             2
           0.00000
                     0.00000
                               84.00000
                                         0.00000
                                                   40.04356
 36.00000
                                                                       GAGE
                                                                             3
 35.00000
           59.00000
                     27.60408 84.00000
                                         0.00000
                                                   0.00000
                                                                       GAGE
                                                                             4
 36.
           00.0
                     0.0
                               84.
                                         0.0
                                                   0.0
                                                            80.0
                                                                       POINT 1
           00.0
                      0.0
                                84.
                                         0.0
                                                   0.0
 36.
                                                            1.0
                                                                       AREA 1
                     0.0
                                                            1.0
 36.
           10.0
                               84.
                                         0.0
                                                   0.0
                                                                       AREA 2
                               84.
36.
          00.0
                     1.6229
                                        0.0
                                                   0.0
                                                             1.0
                                                                       LINE 1
 35.
          59.0
                     58.3771
                               84.
                                        0.0
                                                   0.0
1.000E+02 2.000E+01
350.
280.
1.5
```

10.0

J.

```
1 1.0
F
2 0.01 0.00001
1.0
1.000E-02 2.000E+02
1.000E-02
1 1.000E+06 1.000E-03 1.000E-03
0.5
0.75
0.1
```

APPENDIX E JOB CONTROL LANGUAGE

```
/33
//RJRZATM JOB (21913, 105), SAVE6137,72RJR-A226',TIME=5
// EXEC FORT DCLG, PARM. FORT= OPT=2, XR EF, ID, MAP, DUMP=-G.
// REGION. FORT= 270K.
// PARM.GC = 'EU=-1, DUMP=H, SI=50, SO=51, SP=52, ',
// REGION. GO=72 OK, TIME. GO=5
//FORT.SYSIN DD *
=ATM.F4
//GO. PTO7FOO1 DD SYSGUT=B, DCB=(RECFM=FB, LRECL=80, BLKSIZE=3520)
//GO.FT06F001 DD SYSOUT=A
//GO.FT05F001 DD *
=ATM.DAT
/*ROUTE
         PRINT LOCAL
/*ROUTE
         PUNCH RMT45
ENDINPUT
```

APPENDIX F OUTPUT FROM PROGRAM

TEST RUN WITH POINT, AREA AND LINE SOURCES

PASQUILL STABILITIES NOT USED-STABILITIES FOUND IN SUBROUTINE SIGMA

FORMULATION BY HOSKER OF BRIGGS-SMITH DISPERSION VALUES

DISPERSION COEFFICIENTS FOR STABILITY CLASS

X(M)	A	В	· C	D	E	F
1.0	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01
2.0	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01
3.0	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01
4.0	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01
5.0	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01	0.1000E+01
10.0	0.1411E+01	0.1271E+01	0.1021E+01	0.1000E+01	0.1000E+01	0.1000E+01
15.0	0.2165E+01	0.1865E+01	0.1480E+01	0.1188E+01	0.1000E+01	0.1000E+01
20.0	0.2933E+01	0.2449E+01 '	0.1925E+01	0.1531E+01	0.1000E+01	0.1000E+01
25.0	0.3711E+01	0.3023E+01	0.2361E+01	0.1863E+01	0.1174E+01 (0.1000E+01
30.0	0.4497E+01	0.3591E+01	0.2788E+01	0.2188E+01	0.1379E+01	0.1000E+01
35.0	0.5289E+01	0.4154E+01	0.3209E+01	0.2505E+01	0.1580E+01	0.1120E+01
40.0	0.6086E+01	0.4711E+01	0.3625E+01	0.2817E+01	0.1777E+01	0.1241E+01
45.0	0.6888E+01	0.5263E+01	0.4035E+01	0.3123E+01	0.1970E+01	0.1360E+01
50.0	0.7694E+01	0.5812E+01	0.4441E+01	0.3425E+01	0.2161E+01	0.1475E+01
100.0	0.1589E+02	0.1114E+02	0.8324E+01	0.6269E+01	0.3953E+01	0.2510E+01
200.0	0.3254E+02	0.2121E+02	0.1550E+02	0.1138E+02	0.7155E+01	0.4242E+01
300:0	0.4891E+02	0.3058E+02	0.2205E+02	0.1595E+02	0.9990E+01	0.5703E+01
400.0	0.6497E+02	0.3948E+02	0.2819E+02	0.2017E+02	0.1259E+02	0.7005E+01
500.0	0.8073E+02	0.4802E+02	0.3403E+02	0.2414E+02	0.1502E+02	0.8198E+01
600.0	0.9623E+02	0.5628E+02	0.3964E+02	0-2792E+02	0.1731E+02	0.9309E+01
700.0	0.1115E+03	0.6429E+02	0.4505E+02	0.3153E+02	0.1949E+02	0.1035E+02
800.0	0.1265E+03	0.7209E+02 .	0.5028E+02	0.3499E+02	0.2158E+02	0.1134E+02
900.0	0.1412E+03	0.7969E+02	0.5536E+02	0.3834E+02	0.2359E+02	0.1229E+02
1000.0	0.1558E+03	0.8713E+02	0.6031E+02		0.2552E+02	0.1319E+02
1100.0	0.1701E+03	0.9441E+02	0.6514E+02	0.4474E+02	0.2738E+02	0.1406E+02
1200.0	0.1842E+03	0.1016E+03	0.6985E+02		0.2919E+02	0.1490E+02
1300.0 1400.0	0.1981E+03 0.2118E+03	0.1086E+03 0.1154E+03	0.7447E+02 0.7899E+02	0.5078E+02	0.3094E+02	0.1571E+02
1600.0	0.2387E+03	0.1794E+03	0.8777E+02	0.5370E+02	0.3264E+02	0.1650E+02
1800.0	0.2567E+03	0.1419E+03	0.9625E+02	0.5932E+02 0.6472E+02	0.3592E+02 0.3904E+02	0.1800E+02
2000.0	0.2904E+03			0.6991E+02	0.4202E+02	0.1943E+02 0.2079E+02
2500.0	0.3515E+03	0.1846E+03	0.1239E+03	0.8211E+02	0.4895E+02	0.2393E+02
3000.0	0.4093E+03	0.2129E+03	0.1421E+03	0.9341E+02	0.5529E+02	0.2679E+02
3500.0	0.4641E+03		0.1592E+03	0.1040E+03	0.6115E+02	0.2942E+02
4000.0	0.5162E+03	0.2653E+03	0.1754E+03	0.1040E+03	0.6660E+02	0.3186E+02
4500.0	0.5659E+03	0.2896E+03	0.1908E+03	0.1233E+03	0.7170E+02	0.3414E+02
5000.0	0.6134E+03	0.3130E+03	0.2055E+03	0.1322E+03	0.7652E+02	0.3629E+02
6000.0	0.7027E+03	0.3569E+03	0.2332E+03	0.1488E+03	0.8540E+02	0.4025E+02
7000.0	0.7852E+03	0.3977E+03	0.2588E+03	0.1640E+03	0.9345E+02	0.4383E+02
8000.0	0.8620E+03	0.4358E+03	0.2826E+03	0.1781E+03	0.1008E+03	0.4710E+02
10000.0	0.1001E+04	0.5055E+03	0.3260E+03	0.2036E+03	0.1140E+03	0.5293E+02
15000.0	0.1288E+04	0:6512E+03	0.4165E+03	0.2561E+03	0.1406E+03	0.6459E+02
20000.0	0.1517E+04	0.7691E+03	0.4894E+03	0.2981E+03	0.1614E+03	0.7361E+02
30000.0	0.1869E+04	0.9537E+03	0.6038E+03	0.3632E+03	0.1931E+03	0.8715E+02
40000.0	0.2138E+04	0.1096E+04	0.6921E+03	0.4132E+03	0.2000E+03	0.9715E+02
50000.0	0.2355E+04	0.1212E+04	0.7640E+03	0.4538E+03	0.2000E+03	0.1000E+03
60000.0	0.2537E+04	0.1309E+04	0.8000E+03	0.4880E+03	0.2000E+03	0.1000E+03
70000.0	0.2694E+04	0.1392E+04	0.8000E+03	0.5000E+03	0.2000E+03	0.1000E+03
80000.0	0.2832E+04	0.1466E+04	0.8000E+03	0.5000E+03	0.2000E+03	0.1000E+03
100000.0	0.3067E+04	0.1590E+04	0.8000E+03	0.5000E+03	0.2000E+03	0.1000E+03

ROUGHNESS= 0.150E 00 METERS

NUMBER OF WIND SPEEDS= 6 NUMBER OF WIND DIRECTIONS= 16 NUMBER OF WIND STABILITIES= 6 STABILITIES USED--- 1 2 3 4 5 6

SIGMAX FOR EAC	H STABILITY IN	THE TABLE=	3200. 16	00. 800.	500.	200. 100.
STABILITY WIND	ROSE DATA FOR	PERIOD 1	ANNUAL.			
			STAB	ILITY CLASS	1	
DIRECTION 1	0.0	0.0	0.0	0.0	0.0	0.0
DIRECTION 2	0.000800	0.000200	0.0	0.0	0.0	0.0
DIRECTION 3	0.000800	0.000200	0.0	0.0	0.0	0.0
DIRECTION 4	0.000800	0.000200	0.0	0.0	0.0	0.0
DIRECTION 5	0.0	0.0	0.0	0.0	0.0	0.0
DIRECTION 6	0.0	0.0	0.0	0.0	0.0	0.0
DIRECTION 7	0.000800	0.000200	0.0	0.0	0.0	0.0
DIRECTION 8	0.0	0.0	0.0	0.0	0.0	0.0
DIRECTION 9	0.000800	0.000200	0.0	0.0	0.0	0.0
DIRECTION 10	0.0	0.0	0.0	0.0	0.0	0.0
DIRECTION 11	0.0	0.0	0.0	0.0	0.0	0.0
DIRECTION 12	0.0	0.0	0.0	0.0	0.0	0.0
DIRECTION 13	0.0	0.0	0.0	0.0	0.0	0.0
DIRECTION 14	0.000800	0.000200	0.0	0.0	0.0	0.0
DIRECTION 15	0.0	0.0	0.0	0.0	0.0	0.0
DIRECTION 16	0.0	0.0	0.0	0.0	0.0	0.0
			STAB	ILITY CLASS	2	
DIRECTION 1	0.001901	0.006202	0.001600	0.0	0.0	0.0
DIRECTION 2	0.002301	0.005302	0.000700	0.0	0.0	0.0
DIRECTION 3	0.002001	0.006902	0.001400	0.0	0.0	0.0
DIRECTION 4	0.002001	0.003401	0.000700	0.0	0.0	0.0
DIRECTION 5	0.001100	0.001400	0.000900	.0.0	0.0	0.0
DIRECTION 6	0.001100	0.002101	0.000500	0.0	0.0	0.0
DIRECTION 7	0.001000	0.000500	0.0	0.0	0.0	0.0
DIRECTION 8	0.000800	0.000700	0.0	0.0	0.0	0.0
DIRECTION 9	0.001100	0.001801	0.0	0.0	0.0	0.0
DIRECTION 10	0.000400	0.001600	0.000200	0.0	0.0	0.0
DIRECTION 11	0.000900	0.002501	0.000700	0.0	0.0	0.0
DIRECTION 12	0.000900	0.002101	0.000700	0.0	0.0	0.0
DIRECTION 13	0.001000	0.003001	0.000900	0.0	0.0	0.0
DIRECTION 14	0.001100	0.002301	0.000700	0.0	0.0	0.0
DIRECTION 15	0.000400	0.002501	0.000200	0.0	0.0	0.0
DIRECTION 16	0.000900	0.002301	0.000500	0.0	0.0	0.0
			STAB	ILITY CLASS	3	
DIRECTION 1	0.000500	0.006902	0.003401	0.0	0.0	0.0
DIRECTION 2	0.000700	0.005702	0.004601	0.0	0.0	0.0
DIRECTION 3	0.000700	0.006602	0.006202	0.0	0.0	0.0
DIRECTION 4	0.000200	0.005002	0.002301	0.0	0.0	0.0
DIRECTION 5	0.000900	0.004101	0.002101	0.0	0.0	0.0
DIRECTION 6	0.000500	0.001600	0.001100	0.0	0.0	0.0
DIRECTION 7	0.000700	0.000900	0.000200	0.0	0.0	0.0
DIRECTION 8	0.0	0.000900	0.0	0.0	0.0	0.0
DIRECTION 9	0.000600	0.001801	0.000900	0.0	0.0	0.0
DIRECTION 10	0.000100	0.001400	0.001400	0.000200	0.0	0.0
DIRECTION 11	0.000100	0.001801	0.003001	0.000200	0.0	0.0
DIRECTION 12	0.000200	0.004601	0.005302	0.0	0.0	0.0
DIRECTION 13	0.000300	0.007102	0.004601	0.000200	0.0	0.0
DIRECTION 14	0.000300	0.002501	0.002101	0.0	0.0	0.0
DIRECTION 15	0.000300	0.002101	0.001600	0.0	0.0	0.0
DIRECTION 16	0.000400	0.003401	0.000900	0.0	0.0	0.0

			CTADT	ITY CLASS	ц	
DIRECTION 1	0.004401	0.020106	0.018806	0.006402	· 0.0	
DIRECTION 2	0.004601	0.020100		0.002301	0.0	0.0
DIRECTION 3	0.004101	0.017605	0.019906	0.002301	0.0	0.0
DIRECTION 4	0.002801	0.009803	0.019908	0.003401	0.0	0.0
DIRECTION 5	0.002801	0.006202	0.003901	0.002701	0.0	
DIRECTION 6	0.001901	0.003201	0.003901	0.000300	0.0	0.0
DIRECTION 7	0.001600	0.003201	0.002707	0.000200	0.0	0.0
DIRECTION 8	0.000800	0.002301	0.000900	0.000500	0.0	0.0
DIRECTION 9	0.002501	0.004801	0.003001	0.002501	0.0	0.0
DIRECTION 10	0.001400	0.003901	0.003901	0.002501	0.000700	0.0
DIRECTION 11	0.001701	0.008202	0.010803	0.006902	0.001600	0.0
DIRECTION 12	0.002401	0.012104	0.015305	0.011704	0.001100	0.0
DIRECTION 12	0.003301	0.015305	0.016705	0.011003	0.000900	0.0
DIRECTION 14	0.002101	0.009203	0.008503	0.004801	0.000200	0.0
DIRECTION 15	0.001300	0.005702	0.005502	0.001600	0.000200	0.0
DIRECTION 16	0.002801	0.010303	0.003201	0.000500	0.000200	0.0
DINECTION TO	0.002001			ITY CLASS	5	0.0
DIRECTION 1	0.0	0.010503	0.006202	0.0	0.0	0.0
DIRECTION 2	0.0	0.009803	0.006002	0.0	0.0	0.0
DIRECTION 3	0.0	0.019506	0.005502	0.0	0.0	0.0
DIRECTION 4	0.0	0.014004	0.003201	0.0	0.0	0.0
DIRECTION 5	0.0	0.007302	0.000200	0.0	0.0	0.0
DIRECTION 6	0.0	0.005302	0.000500	0.0	0.0	0.0
DIRECTION 7	0.0	0.003001	0.0	0.0	0.0	0.0
DIRECTION 8	0.0	0.002101	0.0	0.0	0.0	0.0
DIRECTION 9	0.0	0.005002	0.000900	0.0	0.0	0.0
DIRECTION 10	0.0	0.005302	0.000700	0.0	0.0	0.0
DIRECTION, 11	0.0	0.006202	0.002501	0.0	0.0	0.0
DIRECTION 12	0.0	0.011904	0.001,600	0.0	0.0	.0.0
DIRECTION 13	0.0	0.007102	0.002101	0.0	0.0	0.0
DIRECTION 14	0.0	0.003701	0.000700	0.0	0.0	0.0
DIRECTION 15	0.0	0.002501	0.0	0.0	0.0	0.0
DIRECTION 16	0.0	0.004101	0.0	0.0	0.0	0.0
				ITY CLASS	6	
DIRECTION 1	0.007402	0.011403	0.0	0.0	0.0	0.0
DIRECTION 2	0.010003	0.015805	0.0	0.0	0.0	0.0
DIRECTION 3	0.018106	0.023807	0.0	0.0	0.0	0.0
DIRECTION 4	0.017905	0.016305	0.0	0.0	0.0	0.0
DIRECTION 5	0.014004	0.008503	0.0	0.0	0.0	0.0
DIRECTION 6	0.012404	0.005502	0.0	0.0	0.0	0.0
DIRECTION 7	0.008202	0.004801	0.0	0.0	0.0	0.0
DIRECTION 8	0.003401	0.003001	0.0	√0.0	. 0.0	0.0
DIRECTION 9	0.008603	0.005502	0.0	0.0	0.0	0.0
DIRECTION 10	0.005202	0.006002	0.0	0.0 1.	0.0	0.0
DIRECTION 11 DIRECTION 12	0.006602 0.010603	0.006002	0.0	0.0	0.0	0.0
DIRECTION 12	0.009003	0.010103	0.0			0.0
DIRECTION 14	0.005202	0.007302 0.002101	0.0	0.0	0.0	0.0
DIRECTION 15	0.003202	0.002101	0.0	0.0	0.0	0.0
DIRECTION 15	0.007002	0.003401	0.0	0.0	0.0	0.0
2112011011 10	3.00,002	0.000,701	0.0	5.0	3.0	0.0

99 LATITUDE, LONGITUDE AND HEIGHT OF GAUGE SAMPLING POINTS

ID NUMBER	NAME	LATITUDE		LONGIT	UDE		
25		DEGREES MINU	TES SECONDS	DEGREES	MINUTES	SECONDS	HEIGHT(M)
1	GAGE 1		.0 0.0			19.96	
	GAGE 2	36.00 0	.0 32.40	84.00	0.0	0.0	0.0
3	GAGE 3	36.00 0	.0 0.0	84.00	0.0	40.04	0.0
4		35.00 59					
LATITUDE	AND LONGIT	UDE OF POINT SOU	RCES				
ID NUMBER	NAME	LATITUDE		LONGIT	UDE		
		DEGREES MINU	TES SECONDS	DEGREES	MINUTES	SECONDS	
1	POINT 1	36.00 0	.0 0.0	84.00	0.0	0.0	
LATITUDE,	LONGITUDE	AND HEIGHT OF A	REA SOURCE CEN	NTROIDS			
ID NUMBER	NAME	LATITUDE		LONGIT	UDE .		
		DEGREES MINU		DEGREES	MINUTES		
1	AREA 1	36.00 0	.0 0.0	84.00	0.0	0.0	1.0
		36.00 10					
LATITUDE,	LONGITUDE	AND HEIGHT OF L	INE SOURCE END	POINTS			
ID NUMBER	NAME	LATITUDE		LONGIT	UDE		
		DEGREES MINU	res seconds	DEGREES	MINUTES	SECONDS	
1	LINE 1	36.00 0	.0 1.62	84.00	0.0	0.0	1.0
		35.00 59					
AREA SOUR	CE AREAS I	N METERS##2			•		
AREA SOUR	CE 1 ARE	A 1 1.000E 0	2				

AREA SOURCE 2 AREA 2 2.000E 01

> DISTANCE IN METERS FROM GAUGE 1 TO POINT SOURCE 1 = 0.100E 04 DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 1 TO POINT SOURCE 1 = 0.270E 03

> DISTANCE IN METERS FROM GAUGE 2 TO POINT SOURCE 1 = 0.100E 04 DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 2 TO POINT SOURCE 1 = 0.180E 03

> DISTANCE IN METERS FROM GAUGE 3 TO POINT SOURCE 1 = 0.999E 03 DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 3 TO POINT SOURCE 1 = 0.900E 02

DISTANCE IN METERS FROM GAUGE 4 TO POINT SOURCE 1 = 0.100E 04 DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 4 TO POINT SOURCE 1 = 0.0

DISTANCE IN METERS FROM GAUGE 1 TO AREA SOURCE 1 = 0.100E 04 DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 1 TO AREA SOURCE 1 = 0.270E 03

DISTANCE IN METERS FROM GAUGE 1 TO AREA SOURCE 2 = 0.186E 05
DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 1 TO AREA SOURCE 2 = 0.357E 03

DISTANCE IN METERS FROM GAUGE 2 TO AREA SOURCE 1 = 0.100E 04 DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 2 TO AREA SOURCE 1 = 0.180E 03

DISTANCE IN METERS FROM GAUGE 2 TO AREA SOURCE 2 = 0.176E 05 DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 2 TO AREA SOURCE 2 = 0.0

```
DISTANCE IN METERS FROM GAUGE 3 TO AREA SOURCE 1 = 0.999E 03
DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 3 TO AREA SOURCE 1 = 0.900E 02
DISTANCE IN METERS FROM GAUGE 3 TO AREA SOURCE 2 = 0.186E 05
DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 3 TO AREA SOURCE 2 = 0.308E 01
DISTANCE IN METERS FROM GAUGE 4 TO AREA SOURCE 1 = 0.100E 04
DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 4 TO AREA SOURCE 1 = 0.0
DISTANCE IN METERS FROM GAUGE 4 TO AREA SOURCE 2 = 0.196E 05
DIRECTION IN DEG. CW FROM NORTH FROM GAUGE 4 TO AREA SOURCE 2 = 0.0
ANGULAR SPREAD(LESS THAN 2 RADIANS) FROM GAUGE 1 TO AREA 1 = 0.571E 00
R1= 0.999E 03 R2= 0.101E 04
ANGULAR SPREAD(LESS THAN 2 RADIANS) FROM GAUGE 1 TO AREA 2 = 0.138E-01
R1= 0.186E 05 R2= 0.186E 05
ANGULAR SPREAD(LESS THAN 2 RADIANS) FROM GAUGE 2 TO AREA 1 = 0.573E 00
R1= 0.995E 03 R2= 0.101E 04
ANGULAR SPREAD(LESS THAN 2 RADIANS) FROM GAUGE 2 TO AREA 2 = 0.146E-01
R1= 0.175E 05 R2= 0.176E 05
ANGULAR SPREAD(LESS THAN 2 RADIANS) FROM GAUGE 3 TO AREA 1 = 0.574E 00
R1= 0.994E 03 R2= 0.100E 04
ANGULAR SPREAD(LESS THAN 2 RADIANS) FROM GAUGE 3 TO AREA 2 = 0.138E-01
R1= 0.186E 05 R2= 0.186E 05
ANGULAR SPREAD(LESS THAN 2 RADIANS) FROM GAUGE 4 TO AREA 1 = 0.572E 00
R1= 0.997E 03 R2= 0.101E 04
ANGULAR SPREAD(LESS THAN 2 RADIANS) FROM GAUGE 4 TO AREA 2 = 0.131E-01
R1= 0.196E 05 R2= 0.196E 05
 SECTOR FRACTIONS FOR AREA SOURCES
 SECTOR FRACTIONS FOR GAUGE 1 AND AREA SOURCE 1
FRACTION FOR SECTOR 1 =
                          0.0
FRACTION FOR SECTOR 2 = 0.0
FRACTION FOR SECTOR 3 = 0.0
FRACTION FOR SECTOR 4 = 0.0
FRACTION FOR SECTOR 5 = 0.0
FRACTION FOR SECTOR 6 = 0.0
FRACTION FOR SECTOR 7 = 0.0
FRACTION FOR SECTOR 8 = 0.0
FRACTION FOR SECTOR 9 = 0.0
FRACTION FOR SECTOR 10 = 0.0
FRACTION FOR SECTOR 11 = 0.0
FRACTION FOR SECTOR 12 = 0.0
FRACTION FOR SECTOR 13 =
                          0.02537
FRACTION FOR SECTOR 14 = 0.0
FRACTION FOR SECTOR 15 = 0.0
FRACTION FOR SECTOR 16 = 0.0
```

```
SECTOR FRACTIONS FOR GAUGE 1 AND AREA SOURCE 2
FRACTION FOR SECTOR 1 = 0.00061
FRACTION FOR SECTOR 2 = 0.0
FRACTION FOR SECTOR 3 = 0.0
FRACTION FOR SECTOR 4 = 0.0
FRACTION FOR SECTOR 5 = 0.0
                                0.0
FRACTION FOR SECTOR 6 =
FRACTION FOR SECTOR 7 = 0.0
FRACTION FOR SECTOR 8 = 0.0
FRACTION FOR SECTOR 9 = 0.0
FRACTION FOR SECTOR 10 =
                                  0.0
FRACTION FOR SECTOR 11 = 0.0
FRACTION FOR SECTOR 12 = 0.0
FRACTION FOR SECTOR 13 = 0.0
FRACTION FOR SECTOR 14 = 0.0
FRACTION FOR SECTOR 15 = 0.0
FRACTION FOR SECTOR 16 = 0.0
 SECTOR FRACTIONS FOR GAUGE 2 AND AREA SOURCE 1
FRACTION FOR SECTOR 1 = 0.0
FRACTION FOR SECTOR 2 = 0.0
FRACTION FOR SECTOR 3 =
FRACTION FOR SECTOR 4 =
                                  0.0
FRACTION FOR SECTOR 5 = 0.0
FRACTION FOR SECTOR 6 = 0.0
FRACTION FOR SECTOR 7 =
                                  0.0
FRACTION FOR SECTOR 8 = 0.0
FRACTION FOR SECTOR 9 = 0.02546
FRACTION FOR SECTOR 10 = 0.0
FRACTION FOR SECTOR 11 = 0.0
FRACTION FOR SECTOR 12 = 0.0
FRACTION FOR SECTOR 13 = 0.0
FRACTION FOR SECTOR 14 = 0.0
FRACTION FOR SECTOR 15 = 0.0
FRACTION FOR SECTOR 16 = 0.0
 SECTOR FRACTIONS FOR GAUGE 2 AND AREA SOURCE 2
FRACTION FOR SECTOR 1 = 0.00065
FRACTION FOR SECTOR 2 = 0.0
FRACTION FOR SECTOR 3 = 0.0
                                0.0
FRACTION FOR SECTOR 4 =
FRACTION FOR SECTOR 5 =
FRACTION FOR SECTOR 6 =
                                0.0
FRACTION FOR SECTOR 7 =
                                  0.0
FRACTION FOR SECTOR 8 =
                                  0.0
FRACTION FOR SECTOR 9 = 0.0
FRACTION FOR SECTOR 10 =
                                  0.0
FRACTION FOR SECTOR 11 = 0.0
FRACTION FOR SECTOR 12 = 0.0
FRACTION FOR SECTOR 13 = 0.0
FRACTION FOR SECTOR 14 = 0.0
FRACTION FOR SECTOR 15 =
                                  0.0
FRACTION FOR SECTOR 16 =
```

0.0

```
SECTOR FRACTIONS FOR GAUGE 3 AND AREA SOURCE 1
FRACTION FOR SECTOR 1 = 0.0
FRACTION FOR SECTOR 2 = 0.0
FRACTION FOR SECTOR
                            0.0
FRACTION FOR SECTOR 4 =
                            0.0
FRACTION FOR SECTOR 5 =
                            0.02549
FRACTION FOR SECTOR 6 =
                            0.0
FRACTION FOR SECTOR 7 =
                            0.0
FRACTION FOR SECTOR 8 =
                            0.0
FRACTION FOR SECTOR 9 =
                            0.0
FRACTION FOR SECTOR 10 =
                            0.0
FRACTION FOR SECTOR 11 =
                            0.0
FRACTION FOR SECTOR 12 =
                            0.0
FRACTION FOR SECTOR 13 = FRACTION FOR SECTOR 14 =
                            0.0
                            0.0
FRACTION FOR SECTOR 15 = 0.0
FRACTION FOR SECTOR 16 = 0.0
 SECTOR FRACTIONS FOR GAUGE 3 AND AREA SOURCE 2
FRACTION FOR SECTOR 1 = 0.00061
FRACTION FOR SECTOR 2 = 0.0 FRACTION FOR SECTOR 3 = 0.0 FRACTION FOR SECTOR 4 = 0.0
FRACTION FOR SECTOR 5 =
                            0.0
FRACTION FOR SECTOR 6 =
                            0.0
FRACTION FOR SECTOR 7 =
                            0.0
FRACTION FOR SECTOR 8 =
                            0.0
FRACTION FOR SECTOR 9 =
                            0.0
FRACTION FOR SECTOR 10 = 0.0
FRACTION FOR SECTOR 11 =
                            0.0
FRACTION FOR SECTOR 12 =
                            0.0
FRACTION FOR SECTOR 13 = 0.0
FRACTION FOR SECTOR 14 = 0.0
FRACTION FOR SECTOR 15 =
                            0.0
FRACTION FOR SECTOR 16 = 0.0
 SECTOR FRACTIONS FOR GAUGE 4 AND AREA SOURCE 1
FRACTION FOR SECTOR 1 = 0.02541
FRACTION FOR SECTOR 2 = 0.0
FRACTION FOR SECTOR 3 = 0.0
FRACTION FOR SECTOR 4 = 0.0
FRACTION FOR SECTOR 5 = 0.0
FRACTION FOR SECTOR 6 = 0.0
FRACTION FOR SECTOR 7 =
                            0.0
FRACTION FOR SECTOR 8 = FRACTION FOR SECTOR 9 =
                            0.0
                            0.0
FRACTION FOR SECTOR 10 =
                            0.0
FRACTION FOR SECTOR 11 =
                            0.0
FRACTION FOR SECTOR 12 =
                            0.0
FRACTION FOR SECTOR 13 =
                            0.0
FRACTION FOR SECTOR 14 =
                            0.0
```

FRACTION FOR SECTOR 15 = 0.0 FRACTION FOR SECTOR 16 = 0.0

```
SECTOR FRACTIONS FOR GAUGE 4 AND AREA SOURCE 2
```

FRACTION FOR SECTOR 1 = 0.00058 FRACTION FOR SECTOR 2 = 0.0 FRACTION FOR SECTOR 3 = 0.0 FRACTION FOR SECTOR 4 = 0.0 FRACTION FOR SECTOR 5 = 0.0 FRACTION FOR SECTOR 6 = 0.0 FRACTION FOR SECTOR 7 = 0.0 FRACTION FOR SECTOR 8 = 0.0 FRACTION FOR SECTOR 9 = 0.0 FRACTION FOR SECTOR 10 = FRACTION FOR SECTOR 11 = 0.0 FRACTION FOR SECTOR 12 = 0.0 FRACTION FOR SECTOR 13 = 0.0 FRACTION FOR SECTOR 14 = 0.0 FRACTION FOR SECTOR 15 = 0.0 FRACTION FOR SECTOR 16 = 0.0

WIND SPEEDS (M/S) AT HEIGHT OF 10. M

0.90 2.57 4.37 6.94 9.77 12.35

STACK CONDITIONS

SOURCE NAME HEIGHT(M) AMB TEMP(K) ST TEMP(K) RADIUS(M) EXIT VEL(M/S) POINT 1 POINT 1 80.0 280.0 350.0 1.5 WIND SPEEDS (M/S) AT POINT 1 SOURCE HEIGHT AS A FUNCTION OF STABILITY 14.29 2.97 5.05 8.03 11.30 1.04 1 2 1.04 8.03 11.30 14.29

2.97 5.05 1.11 3.16 5.38 8.54 12.03 15.20 3 9.48 1.23 3.51 5.97 13.35 16.87 14.37 5 5.32 9.05 20.23 25.57 1.86 13.71 21.78 30.66 2.82 8.07 38.76

GRASS COVER 1.0

AFTERNOON MIXING HEIGHTS(M) = 600.

NOCTURNAL MIXING HEIGHTS(M) = 400.

DATA FOR POLLUTANT 1 (A GAS)
BOUNDARY LAYER THICKNESS= 1.000E-02 METERS
DIFFUSION CONSTANT FOR WASHOUT= 1.000E-05 METER**2/SEC HALF LIFE= 1.000E 12 SECON

POINT SOURCE EMISSIONS FOR PERIODS

1 ANNUAL

EMISSION RATE FROM POINT SOURCE 1 OF POLLUTANT 1 IN GRAMS/SEC

AREA SOURCE EMISSIONS FOR PERIODS

1 ANNUAL

EMISSION RATE FROM AREA SOURCE 1 OF POLLUTANT 1 IN GRAMS/M**2/SEC 1.0000E-02

LINE SOURCE EMISSIONS FOR PERIODS

```
1 ANNUAL
 EMISSION RATE FROM LINE SOURCE 1 OF POLLUTANT 1 IN GRAMS/M/SEC
    1.0000E-02
 AREA SOURCE 2 = WINDBLOWN SOURCE 1 AREA 2
INFORMATION FOR WINDBLOWN SOURCE 1
          ITYPE= 1
DENSITY= 0.1000E 01 G/CM**3
          ITYPE=
          SALTATION DIAMETER= 0.1000E-02 METERS
SUSPENSION DIAMETER= 0.1000E-02 METERS
          CONCENTRATION FACTOR FOR WINDBLOWN SOURCE
          POLLUTANT 1 5.0000E-01
          FRACTION OF TIME SOURCE REMAINS DRY DURING
                    1 = 0.75000
          SUSPENSION TO SALTATION RATIOS FOR SOURCE 1 = 0.1000E 00 1/METER
          -DEPOSITION VELOCITY FOR WINDBLOWN SOURCE 1 = 0.2980E 02 METERS/SEC
          EMISSION DATA FROM WINDBLOWN SOURCE 1 . . .
                       1 WIND 1 SOURCE STRENGTH= 0.0 GM/M**2/SEC
1 WIND 2 SOURCE STRENGTH= 0.0 GM/M**2/SEC
1 WIND 3 SOURCE STRENGTH= 0.1639E-01 GM/M**2/SEC
1 WIND 4 SOURCE STRENGTH= 0.6050E 00 GM/M**2/SEC
1 WIND 5 SOURCE STRENGTH= 0.3358F 01 GM/M**2/SEC
          POLLUTANT
          POLLUTANT
          POLLUTANT
          POLLUTANT
          POLLUTANT 1 WIND POLLUTANT 1 WIND
                                  6 SOURCE STRENGTH= 0.9149E 01 GM/M**2/SEC
 POLLUTANT 1.
                                  POINT SOURCE DEPOSITION RATE (GM/M**2/SEC)
 GAGE POL ANNUAL
         1 3.708E-10
         1 2.032E-10
        1 2.710E-10
        1 4.548E-10
                                  POINT SOURCE INCREMENT TO CONCENTRATION (G/M**3)
         1 3.535E-09
        1 1.263E-09
   2
        1 1.644E-09
   3
         1 4.341E-09
```

POLLUTANT 1,	AREA SOURCE DEPOSITION RATE (GM/M**2/SEC)
1 1 1.401E-08	
2 1 8.443E-09	
2 1 8.443E-09 3 1 1.238E-08 4 1 1.734E-08	•
4 1 1.734E-08	
· -	AREA SOURCE INCREMENT TO CONCENTRATION (G/M=+3)
1 1.470E-06	
2 1 8.889E-07	• •
2 1 8.889E-07 3 1 1.306E-06 4 1 1.818E-06	
4 1 1.818E-06	
LINE LENGTH= 100.0 M	
POLLUTANT 1,	LINE SOURCE DEPOSITION RATE (GM/M**2/SEC)
	LINE SOURCE DEPOSITION RATE (GM/M**2/SEC)
POLLUTANT 1, 1 1.400E-08	LINE SOURCE DEPOSITION RATE (GM/M**2/SEC)
POLLUTANT 1, 1 1.400E-08	LINE SOURCE DEPOSITION RATE (GM/M**2/SEC)
POLLUTANT 1, 1 1 1.400E-08 2 1 8.441E-09	LINE SOURCE DEPOSITION RATE (GM/M**2/SEC)
POLLUTANT 1, 1 1 1.400E-08 2 1 8.441E-09 3 1 1.236E-08	LINE SOURCE DEPOSITION RATE (GM/M**2/SEC) LINE SOURCE INCREMENT TO CONCENTRATION (G/M**3)
POLLUTANT 1, 1 1 1.400E-08 2 1 8.441E-09 3 1 1.236E-08	
POLLUTANT 1, 1 1 1.400E-08 2 1 8.441E-09 3 1 1.236E-08 4 1 1.742E-08 1 1 1.468E-06 2 1 8.887E-07	LINE SOURCE INCREMENT TO CONCENTRATION (G/M**3)
POLLUTANT 1, 1 1 1.400E-08 2 1 8.441E-09 3 1 1.236E-08 4 1 1.742E-08 1 1 1.468E-06 2 1 8.887E-07	
POLLUTANT 1, 1 1 1.400E-08 2 1 8.441E-09 3 1 1.236E-08 4 1 1.742E-08 1 1 1.468E-06 2 1 8.887E-07	LINE SOURCE INCREMENT TO CONCENTRATION (G/M**3)

TEST RUN WITH POINT, AREA AND LINE SOURCES

POLLUTANT 1,

GAGE	POL	PE	RIOD	DRYDEP G/M**2/SEC	WETDEP G/M**2/SEC	TOTAL DEP G/M##2/SEC	CONC G/M**3
1	1	1	ANNUAL	2.735E-08	1.024E-09	2.838E-08	2.941E-06
2	1	'n	ANNUAL	1.654E-08	5.431E-10	1.709E-08	1.779E-06
3	1	1	ANNUAL	2.429E-08	7.228E-10	2.501E-08	2.612E-06
4	1	1	ANNUAL	3.394E-08	1.274E-09	3.521E-08	3.649E-06

INTERNAL DISTRIBUTION

1.	H. P. Carter/G. E. Whitesides/	18-22.	M. R. Patterson
	CS Library	23-32.	R. J. Raridon
2.	S. J. Cotter	33.	M. B. Sears
3.	C. C. Coutant	34.	C. C. Travis
4-8.	W. M. Culkowski	35.	Central Research Library
9.	J. T. Holdeman	36.	Document Reference Section
10.	F. Kornegay		Section Y-12
11.	C. W. Miller	37-38.	Laboratory Records - (2)
12-16.	B. D. Murphy	39.	Laboratory Records - RC
17.	F. R. O'Donnell	40.	ORNL Patent Section

EXTERNAL DISTRIBUTION

- 41. J. N. Rogers, Division 8324, Sandia Laboratories, Livermore, California 94550.
- 42. Division of Engineering, Mathematics and Geosiences, DOE, Washington, D.C. 20545.
- 43. Office of Assistant Mgr. for Energy Research and Development, DOE/ORO, Oak Ridge, Tennessee 37830.
- 44. Bruce Hicks, Atmospheric Turbulence and Diffusion Laboratory, NOAA, Oak Ridge, Tennessee 37830.
- 45. Ray Hosker, Atmospheric Turbulence and Diffusion Laboratory, NOAA, Oak Ridge, Tennessee 37830.
- 46. K. E. Karp, Bendix Field Engineering Corporation, P. O. Box 1569, Grand Junction, Colorado 81502.
- 47. Joan Lefler, Office of Toxic Substances, U.S. Environmental Protection Agency, Mail Stop TS-798, 401 M Street, S.W., Washington, D.C. 20460.
- 48. Annette Nold, Office of Toxic Substances, U.S. Environmental Protection Agency, Mail Stop TS-798, 401 M Street, S.W., Washington, D.C. 20460.
- 49. William Wood, Office of Toxic Substances, U.S. Environmental Protection Agency, Mail Stop TS-798, 401 M Street, S.W., Washington, D.C. 20460.
- 50-76. Technical Information Center, P. O. Box 62, Oak Ridge, Tennessee 37831.

UNITED STATES DEPARTMENT OF ENERGY P.O. BOX 62 OAK RIDGE, TENNESSEE 37830

OFFICIAL BUSINESS PENALTY FOR PRIVATE USE, \$300

dion dion VOID VOID
POSTAGE AND FEES PAID
VOIDE STATES
VOIDE STATES VOID VOID

NTS

UNC GEOTECH S MURPHY P 0 B0X 14000 GRAND JUNCTION CO 81502-5504

828707 814500183

INVOICE NOT REQUEST NO. 0062 DATE 05/25/88 HANDLING US MAIL

COND	LOCATION	QUANTITY	IDENTIFICATION	CODE
	0657D F	2	ORNL/CSD94	30048
			DE85003596 GIRDLEY \$39.90	
			_	•
,			•	
·				
•				

Out of stock
Will ship when available
Copies limited to quantity shipped
No longer available

Not available at TIC Out of print DOE and contractor use only

Partial shipment-insufficient stock

39.90